Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Androit-APP Journal of Sports Science and Medicine
from September 2014
©Journal of Sports Science and Medicine ( 2013 ) 12 , 339 - 345

Research article
Pelvic Rotation and Lower Extremity Motion with Two Different Front Foot Directions in the Tennis Backhand Groundstroke
Sayumi Iwamoto1, , Toru Fukubayashi2, Patria Hume3,4
Author Information
1 Toyo University, Saitama, Japan
2 Waseda University, Saitama, Japan
3 Auckland University of Technology, Auckland, New Zealand
4 Sports Performance Research Institute, New Zealand; Auckland, New Zealand

Sayumi Iwamoto
✉ Toyo University, 48-1 Oka Asaka-shi, Saitama, Japan 351-8510
Publish Date
Received: 03-08-2012
Accepted: 05-03-2013
Published (online): 01-06-2013
Share this article

When a tennis player steps forward to hit a backhand groundstroke in closed stance, modifying the direction of the front foot relative to the net may reduce the risk of ankle injury and increase performance. This study evaluated the relationship between pelvic rotation and lower extremity movement during the backhand groundstroke when players stepped with toes parallel to the net (Level) or with toes pointed towards the net (Net). High school competitive tennis players (eleven males and seven females, 16.8 ± 0.8 years, all right- handed) performed tennis court tests comprising five maximum speed directional runs to the court intersection line to hit an imaginary ball with forehand or backhand swings. The final backhand groundstroke for each player at the backcourt baseline was analyzed. Pelvic rotation and lower extremity motion were quantified using 3D video analysis from frontal and sagittal plane camera views reconstructed to 3D using DLT methods. Plantar flexion of ankle and supination of the front foot were displayed for both Net and Level groups during the late phase of the front foot step. The timings of the peak pelvis rotational velocity and peak pelvis rotational acceleration showed different pattern for Net and Level groups. The peak timing of the pelvis rotational velocity of the Level group occurred during the late phase of the step, suggesting an increase in the risk of inversion ankle sprain and a decrease in stroke power compared to the Net group.

Key words: Ankle, sprains, prevention, lower extremity movements, pelvic rotational velocity, pelvic rotational acceleration

           Key Points
  • Regarding the movement of the forefoot, the Net group and the Level group showed a pattern of supination-pronation-supination during the front stepping foot contact phase (FSFCP). However, the Level group showed only supination of various degrees during FSFCP.
  • For the Net group, the maximum angular velocity of pelvis occurred in the early phase of FSFCP before impact; however, for the Level group, the maximum angular velocity of pelvis occurred in the latter phase of FSFCP after impact.
  • The Level group players showed a potentially higher risk of inversion ankle sprain during the latter stage of FSFCP as pelvic rotation reached maximum angular velocity.
  • The Net group may have a more effective kinetic chain during backhand groundstrokes, which ultimately enhances performance.
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archives Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
JSSM | Copyright 2001-2017 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.