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Abstract

Based on the muscle synergy theory, this study aimed to investi-
gate the lower limb coordination strategies and their individual
variations during table tennis players’ forehand topspin strokes.
Surface electromyography (SEMG) signals were recorded from
eight ipsilateral lower limb muscles in ten players. Non-negative
matrix factorization (NMF) was applied to extract motor module
composition and temporal activation patterns. Inter-individual
similarity was evaluated using K-means clustering and cosine
similarity. The results showed that: (1) Lower limb muscle syn-
ergy modules could be classified into three clusters: Cluster 1
(rectus femoris/vastus medialis), Cluster 2 (gluteus maximus/
gluteus medius/ biceps femoris/ tibialis anterior), and Cluster 3
(lateral gastrocnemius/ soleus). The composition of motor mod-
ules exhibited high inter-individual similarity across clusters,
with Cluster 2 demonstrating significantly greater consistency
than other clusters (p <0.01); (2) Cluster 2 and Cluster 1 reached
peak activation during the early and mid-late forward phases, re-
spectively, while Cluster 3 showed double peak activation during
the backswing and backward phases. Considerable inter-individ-
ual variability was observed in temporal activation patterns, with
Cluster 2 demonstrating significantly lower similarity than Clus-
ter 3 (p < 0.01); (3) Activation areas differed significantly be-
tween stroke phases, with Cluster 2 greater than Cluster 3 in for-
ward phase, while Cluster 3 higher than Cluster 2 in backward
phase. The findings indicated that: The lower limb utilized three
fundamental muscle synergy patterns during table tennis forechand
topspin strokes. These synergies demonstrated phase-specific
functional roles while maintaining temporal coordination. Ath-
letes can optimize their performance by precisely adjusting tem-
poral parameters while maintaining a standardized lower-limb
movement structure, a regulatory capability particularly evident
during the forward phase.

Key words: Table tennis, muscle synergy, non-negative matrix
factorization, lower limb, motor module, temporal activation.

Introduction

Table tennis is a widely popular competitive sport. Char-
acterized by high speed, strong spin, and dynamic varia-
tions, it demands players to execute strokes with both ra-
pidity and precision. This necessitates not only advanced
technical and tactical proficiency but also well-developed
neuromuscular coordination and control (Xiong et al.,
2022). The table tennis stroke is a complex multi-joint ki-
netic segment-chain movement, involving the coordinated
activation of multiple muscle groups across different
phases of the motion (Bankosz et al., 2020). The accurate
execution of these technical movements relies heavily on
the synergistic interaction of the neuromuscular system.
During the stroke, the lower limbs serve as the foundation

of the kinetic segment-chain. Elite table tennis players ef-
ficiently utilize sequential movements of the ankle, knee,
and hip joints to transfer energy generated from the lower
limbs through axial trunk rotation to the upper limbs
(Bankosz and Winiarski, 2018), thereby enhancing stroke
quality (Chen et al., 2022). Consequently, the coordinative
capacity of lower limb muscles is a critical determinant of
stroke effect. In practice, however, coaches still rely pre-
dominantly on conventional visual observation to evaluate
players’ movement coordination. This method is not quan-
tifiable and fails to reveal the underlying neural strategies
governing muscle control. Consequently, coaches struggle
to pinpoint the root causes of technical deficiencies, such
as muscular redundancy, faulty activation sequences, or
compensatory movements, which impedes the develop-
ment of precise and individualized training programs.

The muscle synergy hypothesis is an important the-
ory that explains how the central nervous system (CNS)
coordinates multiple muscles to generate coordinated
movement, providing a key theoretical framework for un-
derstanding motor coordination (Mussa-Ivaldi, 1988). Its
core premise is that the CNS does not control each muscle
independently, but rather combines a small number of pre-
defined muscle synergy modules to effectively reduce
complexity and redundancy in motor control, thereby
achieving efficient organization and regulation of multi-
muscle activity. This mechanism is considered a funda-
mental strategy employed by the nervous system to address
the "degrees of freedom problem". The CNS primarily co-
ordinates movement execution through two modes: (1) se-
lectively activating specific muscle modules, and (2) regu-
lating a set of fundamental functional modules, each con-
sisting of weighted interactions among multiple muscles.
These modules achieve motor coordination by working to-
gether through temporal and spatial synchronization to
complete specific motor tasks (Safavynia et al., 2011). By
decomposing surface electromyography (SEMG) signals
from multiple muscles, muscle synergy patterns can be ex-
tracted and represented as motor modules (weights as-
signed to each muscle) and motor primitives (degree of ac-
tivation over time) (Cheung et al., 2009). This allows for a
quantitative analysis of the modular organization princi-
ples of the CNS during different motor tasks, thereby re-
vealing the underlying coordination strategies.

The muscle synergy theory has been widely applied
in sports science, revealing both commonalities and spe-
cific characteristics in neuromuscular control across differ-
ent sports. Research indicates that human motor control re-
lies on flexible combinations of shared synergy modules
and task-specific modules (Mussa-Ivaldi, 1988). On one
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hand, the central nervous system adapts to various task de-
mands using a limited set of synergy modules. For in-
stance, athletes demonstrate highly similar synergy pat-
terns during frog jumping, swimming, and walking
(d’Avella et al., 2003), and cyclists exhibit shared synergy
patterns in lower limb movements (Hug et al., 2010). On
the other hand, specific technical movements require
unique synergy modules to meet their biomechanical de-
mands, such as the coordinated activation of rotator cuff
and trunk rotation muscles during baseball pitching (Ao-
yama et al., 2022), the synergistic coordination of upper
and lower limbs along with core muscles in basketball
shooting (Fan et al., 2024), and the phase-dependent syn-
ergy of supraspinatus, serratus anterior, and infraspinatus
muscles during badminton overhead smashes (Barnamehei
et al., 2018). However, muscle synergy patterns show in-
ter-individual variability when performing identical motor
tasks, attributable to differences in athletic experience,
physiological structure, or technical style (Mussa-Ivaldi,
1988). For example, skilled gymnasts show individualized
timing and intensity of muscle activation during high-bar
swings (Frére and Hug, 2012), and while expert baseball
pitchers share fundamental synergy modules during pitch-
ing, their temporal activation patterns of upper limb mus-
cles exhibit individual variations (Aoyama et al., 2022).
These differences reflect the nervous system's capacity to
maintain functional flexibility in local muscle activation to
achieve functional goals, thereby balancing stability and
adaptability in motor control.

As an open-skill sport, lower-limb coordination
control in table tennis comprises three continuous phases:
backswing, forward, and backward, each imposing distinct
demands on synergy strategies (Tian and Xiao, 2024). The
backswing phase is characterized by moderate lower-limb
flexion and a backward shift of the body center of gravity
to the rear foot, preloading the body for subsequent force
generation. The forward phase requires a rapid lower-limb
extension coordinated with trunk rotation to facilitate the
transfer of momentum from the lower to upper body. The
backward phase demands quick adjustments in footwork
and body position to prepare for the next stroke (He et al.,
2022). The execution of this action may rely on the recruit-
ment of both shared synergy modules and task-specific
modules; however, the underlying lower-limb synergy
mechanisms remain unclear. Furthermore, inter-individual
differences in muscle synergy patterns are observed even
when performing the same motor task. These differences,
potentially arising from factors such as training experience,
body structure, or technical style, manifest as personalized
adaptations in the synergy structure or activation timing.
For instance, skilled gymnasts exhibit individualized mus-
cle activation patterns during high-bar swings (Frére and
Hug, 2012), and baseball pitchers, while sharing basic syn-
ergy modules, show individual variations in the activation
timing of upper-limb muscles (Aoyama et al., 2022). In ta-
ble tennis strokes, differences among athletes in backswing
amplitude, force application during the forward, and back-
ward rhythm may also lead to personalized characteristics
in the recruitment order, intensity modulation, and phase
transition strategies of lower-limb synergy modules
(Bankosz and Winiarski, 2020). This flexibility reflects the

nervous system's adaptive regulation of local muscle
control to achieve functional goals, thereby establishing a
dynamic balance between stability and variability. Conse-
quently, a deep understanding and targeted development of
individualized muscle synergy patterns are crucial for en-
hancing stroke quality and movement stability in athletes.

The forehand topspin stroke, one of the most fre-
quently used and aggressive offensive techniques in table
tennis (Bankosz et al., 2020), plays a crucial role in win-
ning matches. The effectiveness of this movement is highly
dependent on efficient and coordinated control initiated
from the lower limbs, particularly during the force genera-
tion and transmission. However, a systematic understand-
ing of the structural characteristics of lower-limb synergy
patterns and their individual variations during players’
forehand topspin stroke, from the perspective of muscle
synergy theory, remains lacking (Mussa-Ivaldi, 1988).

Therefore, based on the muscle synergy theory, this
study collected surface electromyography (SEMG) signals
from the lower limbs of table tennis players during the fore-
hand topspin strokes to extract the corresponding muscle
synergy patterns. It aims to systematically analyze the co-
ordination strategies across the movement, focusing on
both the composition of motor modules and their temporal
activation patterns, and to compare individual variations
among athletes, thereby providing both a theoretical basis
and practical guidance for making targeted training pro-
grams for athletes.

Methods

Participants

Ten right-handed male table tennis players were randomly
recruited from China Table Tennis College (Age: 20.70 £+
2.00 years; Height: 177.80 £+ 5.80 cm; Weight: 71.75 +7.54
kg; Training experience: 12.80 + 2.96 years; Skill level:
National Grade one). The handedness of players was estab-
lished according to which hand was used to hold the racket,
and the foot on the same side with the handedness was con-
sidered as the footedness (Peters and Murphy, 1992). The
inclusion criteria for participants were: (1) in good health
condition, (2) no lower limb joint injuries within the past
three months, and (3) capable of performing moderate-to-
high intensity exercise training. This study followed the
guidelines of the Declaration of Helsinki and was approved
by the Ethics Committee of Shanghai University of Sport
(Approval No.: 102772024RT1780). Prior to the experi-
ment, all participants were informed of the testing proce-
dures and provided written informed consent.

Data collection instruments

To investigate lower limb muscle synergy during forehand
topspin strokes in table tennis players, both kinematic and
electromyographic (EMG) data were collected. The exper-
imental ball was DHS D40+ (3-star) of Double Happiness
Company (DHS). The table and rackets used in this exper-
iment were Rainbow table made by DHS and Timo Boll-
ZLCarbon, separately. The racket was wrapped with red
rubber on one side while black on the other side. A Serving
machine (V-989H, Nittaku) was employed for ball delivery
at a frequency of 25 balls per minute, with parameters set
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Figure 1. Three phases of stroke process.

as follows: upper wheel rotation speed at level 7 (10-level
scale, higher numbers indicating faster speed) and lower
wheel rotation at level 3. And it was positioned approxi-
mately 30 - 40 cm directly behind the center of the table’s
end line, with the ball outlet around 100 cm above the
ground.

Figure 2. EMG for 8 muscles.

Kinematic data were collected using a Qualisys 3D
motion capture system (Oqus700+, Qualisys, Gothenburg,
Sweden) at 200 Hz sampling frequency. A total of 50 re-
flective markers (14mm diameter infrared spheres) were
attached to participants. The captured motion data were
processed in Visual 3D software (C-Motion, Inc., German-
town, MD, USA) for modeling, with the stroke process di-
vided into three phases: (A) backswing, (B) forward, and
(C) backward (Figure 1) (Zheng et al., 2021). EMG signals
were recorded using a wireless surface EMG system
(NORAXON, USA) at 2000 Hz sampling frequency, cap-
turing muscle activity from eight lower limb muscles on
the right during stroke execution (lino, 2022): gluteus max-
imus (GMax), gluteus medius (GMed), biceps femoris

(BF), rectus femoris (RF), vastus medialis (VM), tibialis
anterior (TA), lateral gastrocnemius (LG), and soleus (Sol)
(Figure 2).
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Figure 3. Experimental setup.

Experimental set up

The experiment was conducted in the Biomechanics La-
boratory at Shanghai University of Sport. The Qualisys 3D
motion capture system and NORAXON surface electromy-
ography (sEMG) system were used to synchronously col-
lect kinematic data and lower limb muscle EMG data dur-
ing table tennis players’ forehand topspin strokes. The two
systems were synchronized using a trigger synchronization
box. The experimental setup was shown in Figure 3.

Experimental protocol

The experimental flowchart was illustrated in Figure 4.
Prior to data collection, the high-speed motion capture sys-
tem was calibrated using an L-shaped calibration frame.
Participants then donned compression shirts and shorts, af-
ter which research staff attached markers and EMG sensors
on relevant anatomical landmarks according to the muscu-
loskeletal model. Before sensor placement, the skin was
prepared by cleaning and shaving to reduce impedance at
the electrode-skin interface. Surface EMG sensors contain-
ing four silver-bar electrodes (diameter: lmm, length:
10mm, inter-electrode distance: 10mm) were then attached
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Figure 4. The experimental flowchart.

to the eight target muscles shown in Figure 2. After 5-mi-
nute warm-up, each participant was asked to perform five
forehand high-quality topspin strokes during the formal
test, with 30-second rest interval between each trial.
Strokes with the ball hitting the net or out of the table were
considered to be invalid.

Data analysis

The EMG signals were processed using MATLAB soft-
ware (MathWorks, 2024b, USA). The EMG signals from
the eight muscles were processed through the following
steps: band-pass filtering (20 - 450Hz), high-pass filtering
using a fourth-order digital Butterworth filter with a cutoff
frequency of 40 Hz (Messier et al., 2005), and full-wave
rectification. Signal smoothing was then performed
through low-pass filtering with a fourth-order digital But-
terworth filter at a 15 Hz cutoff frequency (Goryachev et
al., 2011). The duration of each stroke (from backswing in-
itiation to backward completion) was normalized to 201
data points using cubic spline interpolation (Aoyama et al.,
2022). The raw signals were normalized relative to the
peak amplitude of each trial, and the averaged values were
calculated across five repeated trials.

Non-negative Matrix Factorization (NMF)

The non-negative matrix factorization (NMF) algorithm
was employed to analyze muscle synergies from surface
electromyography (sEMG) signals in this study. The EMG
signals from eight muscles were normalized to balance the
variability of muscle activity levels, facilitating subsequent

extraction of motor module composition and their temporal
activation patterns. The analysis was performed using
MATLAB's Statistics and Machine Learning Toolbox, fol-
lowing the mathematical model proposed by d'Avella
(d’Avella et al., 2003), as shown in Equation 1. In this
model, W;represents the contribution weight (ranging [0,
1]) of each muscle within the i-th motor module, while c;
reflects the temporal activation patterns of the correspond-
ing motor module.

M=c,W,;+c,W,+---+c,W, (Equation 1)

This study adopted a multi-dimensional optimization ap-
proach to comprehensively evaluate computational results
across different numbers of motor modules (ranging from
1 to 7) to determine the optimal number of modules. The
algorithm's termination conditions were set as follows: the
computation ceased when either the sum of squared recon-
struction errors fell below 10 or the number of iterations
reached 500 (Israely et al., 2017). To enhance the reliabil-
ity of the results, each decomposition dimension was sub-
jected to 20 independent computational repetitions to ef-
fectively mitigate the risk of local optima (Hagio et al.,
2021). Additionally, the variance accounted for (VAF) was
calculated to quantify the goodness of fit between the
measured and reconstructed data for each number of mod-
ules. The optimal number of modules was defined as the
minimum number of modules that achieved a VAF greater
than 90%, with additional modules contributing less than
5% to the VAF (Frére and Hug, 2012).
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The VAF was calculated using the following for-
mula:

e o (ey)’

VAF= (l . 3
0 S (Eiy)

) x100[%] (Equation 2)

Here, E; j corresponds to the actual EMG signal of the i-th
muscle channel at time sample j, while ei; represents the
reconstructed EMG signal generated from the linear com-
bination of synergy activation coefficients and synergy
vectors. The parameters p and n are the number of muscle
channels and time samples, respectively. The numerator
sums the squared residuals between the original and recon-
structed signals across all muscles and time points, whereas
the denominator reflects the total variance in the original
EMG data.

Cluster analysis

Based on the similarity of muscle composition, the motor
modules of 10 athletes were clustered using k-means anal-
ysis (Steele et al., 2015). The maximum number of itera-
tions was set to 50 (Kuntze et al., 2018). To account for the
influence of initial cluster centroids on the k-means solu-
tion, the clustering procedure was repeated 10 times with
different initial centroids (Kuntze et al., 2018).

Testing the similarity of motor module composition
Cosine similarity (CS) analysis was employed to examine
the similarity of motor module composition among athletes
(Hagio et al., 2021). CS represents the inner product of two
paired module composition vectors normalized to unit
length, which corresponds to the cosine of the angle be-
tween the vectors. Values closer to 1 indicate higher simi-
larity. The CS value was calculated for motor module com-
position between every pair of athletes. Two motor mod-
ules with CS > 0.8 were defined as similar (Oliveira et al.,
2014).

Temporal activation patterns

The similarity of temporal activation patterns among ath-
letes was calculated using the same method as for motor
module composition similarity. The contribution of each

cluster to each stroke phase was determined by calculating
the percentage of the area under the activation curve (acti-
vation area) for each phase relative to the total activation
area.

Statistical analysis

All statistical analyses were performed using SPSS 26.0
(IBM Corp., Armonk, NY, USA), with the significance
level set at a = 0.05. The Friedman test was employed to
analyze the differences in module composition and tem-
poral activation pattern similarity among clusters, as well
as the differences in activation area across different stroke
phases within each cluster. Bonferroni correction was ap-
plied for multiple comparisons.

Results

Number of motor modules

The EMG activities were analyzed using non-negative ma-
trix factorization (NMF), and the average VAF values for
1-7 motor modules across all 10 athletes were calculated,
as shown in Figure 5 (data presented as mean + standard
deviation). The results demonstrated that when three motor
modules were employed, all 10 table tennis players exhib-
ited VAF values exceeding 90% (mean = 93.8%, SD =
1.91). Notably, three athletes achieved a VAF value ex-
ceeding 90% VAF using only two motor modules. Conse-
quently, a total of 27 motor modules were ultimately ex-
tracted (two modules each for these three athletes and three
modules each for the remaining seven athletes).

Composition of the motor modules

The optimal number of clusters (k) was determined by cal-
culating silhouette scores for different k-values in the clus-
ter analysis (Oliveira et al., 2014), with the k-value yield-
ing the highest mean silhouette score identified as the op-
timal solution (Table 1). When the cluster number k was
set to 3, the highest silhouette score was achieved (Table
1), indicating that a motor module number of 3 most
closely approximates the actual muscle synergy patterns in
athletes.
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Figure 5. Relationship between the number of motor modules and mean VAF (%).
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Table 1. Silhouette scores for different number of clusters.

Number of clusters 2

3 4 5

Silhouette score (mean + SD) 0.498 + 0.098

0.520 + 0.090 0.454 +0.053 0.416 +=0.042

Muscle weight
Muscle weight
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Figure 6. Motor module compositions during stoke.

Based on the optimal clustering results, the compo-
sition of the three identified motor modules was further an-
alyzed, as shown in Figure 6. This figure illustrated the
weight distribution of eight lower limb muscles within the
motor modules across all 10 athletes (data presented as
mean + standard deviation). Specifically, Cluster 1 showed
higher activation weights in the RF and VM, Cluster 2 ex-
hibited greater activation weights in the GMax, GMed, BF,
and TA, and Cluster 3 demonstrated predominant activa-
tion weights in the LG and Sol.

Inter-individual similarity of motor module composi-
tion
The similarity of motor module composition among all ath-

letes was evaluated using cosine similarity (CS) analysis,
with the results presented in Figure 7. Each cell in the fig-
ure represents the CS value between every pair of motor
modules. Results revealed that athletes within Cluster 2 ex-
hibited the highest degree of similarity in motor module
composition, while those in Clusters 1 and 3 demonstrated
relatively lower inter-individual similarity.

Friedman test was used to compare the distributions
of cosine similarity (CS) values between two individual
athletes within each cluster, with the results presented in
Figure 8. The results revealed that the inter-individual sim-
ilarity in Cluster 2 (CS = 0.92) was significantly higher
than that in both Cluster 1 (CS = 0.82) and Cluster 3 (CS =
0.80) (F (2, 242) =16.929, p < 0.001).

-1 | |
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Cluster 2

|19

Cluster 3

1 2 3 4 5 6 7 B8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
J L

|

Cluster 1

Cluster 2
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Figure 7. Inter-individual similarity in motor module compositions among all ten players.
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Figure 8. The inter-individual similarity of motor module
composition among the three clusters.

Temporal activation pattern

The temporal activation patterns corresponding to the mo-
tor modules, as derived via the NMF algorithm, were
shown in Figure 9. The results revealed that the muscle ac-
tivation intensities of motor modules within all three clus-
ters peaked during different phases of the stroke. Cluster 1
reached peak activation during the mid-to-late forward
phase, Cluster 2 showed peak activation in the early for-
ward phase, and Cluster 3 demonstrated a biphasic activa-
tion pattern, peaking during both backswing and backward
phases.

Inter-individual similarity of temporal activation pat-
terns

The similarity of temporal activation patterns among all
athletes was evaluated using cosine similarity (CS) analy-
sis, with the results presented in Figure 10. The results
showed that all three clusters exhibited moderate inter-in-
dividual similarity in temporal activation patterns (CS
range: 0.6 - 0.8). Cluster 2 (CS = 0.63) demonstrated sig-
nificantly lower similarity compared to Cluster 3 (CS =
0.80) (F (2, 242) =10.993, p < 0.01).

Activation areas of different clusters across different
stroke phases

Friedman test was used to compare the differences in acti-
vation areas among clusters across different stroke phase,

with the results presented in Figure 11. The results revealed
that during the backswing phase, the activation areas of all
clusters were relatively uniform, with no significant differ-
ences observed among them (p > 0.05). In the forward
phase, the activation area of Cluster 2 was significantly
larger than that of Cluster 3 (p < 0.05), while no significant
differences were detected between Cluster 1 and Clusters 2
or 3. During the backward phase, the activation area of
Cluster 3 was significantly greater than that of Cluster 2 (p
<0.05).

sk

- .
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Cosine similarity

02+

0.0 T T T
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Cluster number

Figure 10. The inter-individual similarity of temporal activa-
tion patterns within the three clusters during the stroke. **p
<0.01.

Discussion

This study employed NMF-based muscle synergy analysis
to extract three fundamental motor modules underlying
lower limb muscle activity during forehand topspin strokes
in table tennis players. The results indicate that all athletes'
lower-limb synergy patterns can be categorized into three
functional clusters, with the silhouette score from cluster
analysis confirming the validity of this classification. This
suggests that the CNS primarily simplifies motor control
through these three basic modules (Mussa-Ivaldi, 1988).
Regarding module utilization, seven athletes fully recruited
all three modules during the stroke, while the remaining
three athletes used only two of the three modules,
which reflects individual variations in motor execution.

Backswing Forward Backward = .
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Figure 9. Temporal activation patterns of the three intra-cluster motor modules during the stoke.
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Figure 11. The percentage distribution of total activation areas among the three clusters during the three phases of the stroke.

*p < 0.05, **p < 0.01.

Further analysis revealed that the three motor modules ex-
hibit distinct functional specialization across different
phases of the stroke: (1) during the backswing phase, the
movement of lower limbs was coordinated by Clusters 1,
2, and 3; (2) during the forward phase, the movement of
lower limbs was primarily driven by Clusters 1 and 2; and
(3) during the backward phase, the movement of lower
limbs was mainly controlled by Cluster 3. These findings
revealed the modular structure and phase-specific charac-
teristics of lower-limb coordination control during table
tennis forehand topspin strokes, thereby providing a basis
for understanding its coordination strategies.

Cluster 1 consists of the RF and VM, which primar-
ily contribute to hip flexion and knee extension. The acti-
vation peak of this cluster occurred during the mid-to-late
forward phase when the right (supporting) leg rapidly tran-
sitions from slight flexion to extension. The RF and VM
work synergistically to extend the knee joint while coordi-
nating with hip joint movements to shift the center of grav-
ity forward, thereby optimizing the efficiency of ground re-
action force generation. Notably, the RF serves as the dom-
inant muscle, generating upward and forward trunk motion
to provide the primary power source for the forward stroke.
Cluster 2 comprises the GMax, GMed, BF, and TA, reach-
ing peak activation during the early forward phase. These
muscles primarily contribute to hip extension and external
rotation. Specifically, the GMax and BF work synergisti-
cally to drive hip extension and external rotation, generat-
ing vertical ground reaction forces, while the TA assists in
ground push-off production through dorsiflexion control.
During the early forward phase, the right ankle rapidly
transitions from dorsiflexion to plantarflexion. While the
LG and Sol dominate explosive plantarflexion, the TA
modulates plantarflexion speed through eccentric contrac-
tion to prevent excessive foot inversion, ensuring efficient
force transfer along the sagittal plane. Additionally, the
GMed maintains pelvic stability in the coronal plane via
hip abduction torque, preventing trunk lateral tilt and en-
suring swing trajectory precision. These findings align
with Le Mansec (Le Mansec et al., 2017), who also re-
ported strong activation of the BF and GMax during fore-
hand topspin strokes. The present study further refines the
dynamic activation characteristics and synergistic patterns
of these muscles across different stroke phases.

Cluster 3 consists of the LG and Sol, exhibiting a

double activation pattern during the backswing and back-
ward phases. During the backswing phase, the Sol main-
tains arch tension through isometric contraction while pre-
activating ankle plantarflexion potential energy. Concur-
rently, the LG regulates knee flexion velocity through mild
eccentric contraction to store elastic energy. In the back-
ward phase, this module was reactivated: the LG and Sol
work synergistically through eccentric contraction to ab-
sorb landing impact forces. This synergistic mechanism
not only achieves efficient energy dissipation but also pro-
vides essentially dynamic stability for consecutive strokes.
These findings corroborate the study of He (He et al.,
2022), who similarly observed strong activation of peri-an-
kle muscles during backward and their critical role in foot
stabilization. The current study further clarifies the specific
mechanisms by which the LG and Sol regulate knee-ankle
joint control during impact absorption. Compared to previ-
ous studies, by identifying the key muscles and their syn-
ergistic patterns in ankle motion control, this study pro-
vides new theoretical insights into the precise neuromuscu-
lar regulation mechanisms during table tennis forehand
strokes.

The results revealed that seven of the ten athletes
used three synergy patterns during the forehand topspin
stroke, while the other three used only two of the three pat-
terns. According to the muscle synergy theory (Mussa-
Ivaldi, 1988), prolonged training can optimize neuromus-
cular control strategies, leading to the development of more
concise and stable synergy patterns in athletes (d’Avella et
al., 2003). Since the ten athletes demonstrated nearly iden-
tical skill levels, the observed variations in their number of
synergy modules do not reflect the superiority of one strat-
egy over another. Rather, these variations highlight the
plasticity and diversity of the human nervous system when
solving complex motor tasks. This finding carries signifi-
cant implications for training practices: coaches should not
strive for all athletes to imitate a single movement pattern.
Instead, they should respect individual variability and
guide athletes to discover and optimize their most efficient
neuromuscular synergy strategies, thereby maximizing
their unique athletic potential.

Inter-cluster comparisons revealed high inter-indi-
vidual similarity in motor module composition across all
clusters, whereas temporal activation patterns exhibited
lower similarity. This finding is consistent with the muscle
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synergy theory (Mussa-Ivaldi, 1988), which suggests that
the central nervous system may reuse consistent spatial
synergy modules while flexibly adjusting their temporal
activation patterns to meet different movement demands
(d’Avella et al., 2003). Further evidence indicates that as
motor proficiency improves, the temporal overlap of syn-
ergistic activation decreases (Kaufmann et al., 2024), and
elite athletes demonstrate greater flexibility in adjusting
muscle activation strategies to optimize movement stabil-
ity (Pan et al., 2024). This indicates that while different ath-
letes maintain highly consistent core muscle combinations
when executing forehand topspin strokes, their temporal
activation patterns serve as the key distinguishing factor
reflecting individual technical style and variation. Among
these, Cluster 2 exhibits the highest inter-individual simi-
larity in module composition, yet the lowest similarity in
temporal activation patterns. The reason is that Cluster 2,
as the primary force-generating module during the forward
phase, need to meet the rigid biomechanical demands of
rapid hip extension and external rotation. This results in
low variability in spatial composition due to cross-individ-
ual anatomical and functional consistency. Conversely,
owing to the adjustable timing characteristics of table ten-
nis strokes, athletes employ different temporal strategies
during the forward to complete the stroke, leading to sig-
nificant inter-individual variations in temporal activation
patterns. Therefore, this suggests that during the basic
training stage, coaches should emphasize the standardiza-
tion of the lower limb force production structure to ensure
athletes develop a correct spatial synergy foundation. In the
advanced stage, athletes should be permitted, and even en-
couraged, to make personalized adjustments in the tem-
poral domain to adapt to their tactical style or physical at-
tributes.

From the perspective of temporal activation pat-
terns, table tennis forehand topspin strokes exhibit multi-
peak activation patterns similar to badminton smashes
(Barnamehei et al., 2018), which differ distinctly from
baseball throwing (Aoyama et al., 2022) and basketball
shooting (Fan et al., 2024) that emphasize single maximal
power output with clearly defined phase boundaries. Dur-
ing forehand topspin strokes, players must maintain stroke
continuity during rapid directional changes, involving re-
peated cycles of elastic energy storage-release-restorage.
This necessitates multiple activations of the same cluster
within a movement cycle, explaining why Cluster 3 was
activated twice during the backswing and backward
phases. Furthermore, kinetic overlap in the backswing and
forward phases (e.g., maintaining backward weight shift
during early forward) forces partial co-activation of Cluster
1 (hip flexion) and Cluster 2 (hip extension). This indicates
that the coordination of the lower limbs during table tennis
forehand topspin strokes does not rely on maximizing the
intensity of a single synergy module, but rather achieves
movement continuity and energy efficiency through the
temporal coupling and repeated recruitment of multiple
modules. Thus, training design should emphasize the de-
velopment of multi-peak activation capability, particularly
the ability to rapidly recover after a stroke and prepare for
continuous force generation. This finding provides a theo-
retical basis for solving common technical issues such as

"disconnected movement” and "slow backward" in train-
ing.

This study confirms that during forehand topspin
strokes, table tennis players' lower limb muscle activity is
organized into three motor modules, demonstrating tem-
poral characteristics of multiple activations within a single
movement cycle. Through precise temporal coupling and
intensity modulation, these modules achieve coordinated
force production, forming an efficient energy transfer
chain. This research reveals that while maintaining a stand-
ardized lower-limb movement structure, athletes can opti-
mize movement economy and stroke effect by finely regu-
lating temporal parameters. This regulatory ability is par-
ticularly evident during the multi-module coordination and
potential-to-kinetic energy conversion in the forward
phase. The study translates the abstract concept of "coordi-
nation" into two quantifiable dimensions, spatial modules
and temporal activation, providing coaches with both a the-
oretical framework and practical guidance for precisely di-
agnosing technical deficiencies and implementing person-
alized training programs.

Conclusion

During table tennis forehand topspin strokes, the lower
limb muscles exhibited three fundamental synergistic pat-
terns: (a) Rectus femoris (RF) and vastus medialis (VM);
(b) Gluteus maximus (GMax), gluteus medius (GMed), bi-
ceps femoris (BF), and tibialis anterior (TA); (c) Lateral
gastrocnemius (LG) and soleus (Sol). The three synergy
patterns demonstrate phased specialization, activate multi-
ple times within a single cycle, and work together in a dy-
namic interplay: during the backswing phase, all three syn-
ergies were co-activated, while the forward phase was
dominated by Synergies 1 and 2, and the backward phase
was solely controlled by Synergy 3. Athletes can optimize
performance by precisely adjusting temporal parameters
while maintaining a standardized lower-limb movement
structure, a regulatory capability particularly evident dur-
ing the forward phase.

Practical implications

This study reveals that athletes can achieve stable forehand
topspin strokes through coordinated activation of three
lower-limb motor modules. Therefore, modular training is
recommended to enhance stroke quality, such as strength-
ening RF/VM via weighted leg extensions, activating
GMax/GMed via single-leg deadlifts, and developing
LG/Sol using box jump exercises.

Based on the finding that athletes achieve coordi-
nated force generation through timed coupling of three
lower-limb modules, training programs should emphasize
the development of multi-peak activation capability, par-
ticularly focusing on rapid recovery after the stroke and
preparation for consecutive force generation. For example,
continuous attack training combined with footwork drills
can effectively develop an athlete's ability to maintain ki-
netic chain integrity and achieve efficient recovery during
dynamic movements.

Research indicates that athletes enhance perfor-
mance by regulating muscle activation timing and
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intensity. A phased training approach is recommended: be-
ginners should first establish proper activation patterns
through standardized drills, then progressively refine tem-
poral control using variable-rhythm and randomized deliv-
ery training. This methodology helps to develop individu-
alized neuromuscular control strategies while maintaining
technical standardization.

Limitations

This study only selected ten male table tennis players. This
may present certain limitations in terms of sample repre-
sentativeness and the generalizability of the conclusions.
Future research should include a larger sample size and in-
vestigate the muscle synergies of both male and female
players. This study only analyzed the muscle synergies in
the lower limb of the racket-holding side. Future research
could also include both lower and upper limb muscles to
provide a more comprehensive understanding of whole-
body coordination patterns. This study did not collect
stroke effect data. Future research could simultaneously
record the stroke outcome data to further analyze the rela-
tionship between the muscle synergy patterns and stroke
effect.
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Key points

¢ During table tennis forehand topspin stroke, the lower limb
muscles exhibited three fundamental synergistic patterns.

e The three synergy patterns demonstrate phased specializa-
tion, activate multiple times within a single cycle, and work
together in a dynamic interplay.

e Athletes can optimize performance by precisely adjusting
temporal parameters while maintaining a standardized
lower-limb movement structure, a regulatory capability par-
ticularly evident during the forward phase.
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