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Abstract 
Based on the muscle synergy theory, this study aimed to investi-
gate the lower limb coordination strategies and their individual 
variations during table tennis players’ forehand topspin strokes. 
Surface electromyography (sEMG) signals were recorded from 
eight ipsilateral lower limb muscles in ten players. Non-negative 
matrix factorization (NMF) was applied to extract motor module 
composition and temporal activation patterns. Inter-individual 
similarity was evaluated using K-means clustering and cosine 
similarity. The results showed that: (1) Lower limb muscle syn-
ergy modules could be classified into three clusters: Cluster 1 
(rectus femoris/vastus medialis), Cluster 2 (gluteus maximus/ 
gluteus medius/ biceps femoris/ tibialis anterior), and Cluster 3 
(lateral gastrocnemius/ soleus). The composition of motor mod-
ules exhibited high inter-individual similarity across clusters, 
with Cluster 2 demonstrating significantly greater consistency 
than other clusters (p < 0.01); (2) Cluster 2 and Cluster 1 reached 
peak activation during the early and mid-late forward phases, re-
spectively, while Cluster 3 showed double peak activation during 
the backswing and backward phases. Considerable inter-individ-
ual variability was observed in temporal activation patterns, with 
Cluster 2 demonstrating significantly lower similarity than Clus-
ter 3 (p < 0.01); (3) Activation areas differed significantly be-
tween stroke phases, with Cluster 2 greater than Cluster 3 in for-
ward phase, while Cluster 3 higher than Cluster 2 in backward 
phase. The findings indicated that: The lower limb utilized three 
fundamental muscle synergy patterns during table tennis forehand 
topspin strokes. These synergies demonstrated phase-specific 
functional roles while maintaining temporal coordination. Ath-
letes can optimize their performance by precisely adjusting tem-
poral parameters while maintaining a standardized lower-limb 
movement structure, a regulatory capability particularly evident 
during the forward phase. 
 
Key words: Table tennis, muscle synergy, non-negative matrix 
factorization, lower limb, motor module, temporal activation. 

 
 

Introduction 
 
Table tennis is a widely popular competitive sport. Char-
acterized by high speed, strong spin, and dynamic varia-
tions, it demands players to execute strokes with both ra-
pidity and precision. This necessitates not only advanced 
technical and tactical proficiency but also well-developed 
neuromuscular coordination and control (Xiong et al., 
2022). The table tennis stroke is a complex multi-joint ki-
netic segment-chain movement, involving the coordinated 
activation of multiple muscle groups across different 
phases of the motion (Bańkosz et al., 2020). The accurate 
execution of these technical movements relies heavily on 
the synergistic interaction of the neuromuscular system. 
During the stroke, the lower limbs serve as the foundation 

of the kinetic segment-chain. Elite table tennis players ef-
ficiently utilize sequential movements of the ankle, knee, 
and hip joints to transfer energy generated from the lower 
limbs through axial trunk rotation to the upper limbs 
(Bańkosz and Winiarski, 2018), thereby enhancing stroke 
quality (Chen et al., 2022). Consequently, the coordinative 
capacity of lower limb muscles is a critical determinant of 
stroke effect. In practice, however, coaches still rely pre-
dominantly on conventional visual observation to evaluate 
players’ movement coordination. This method is not quan-
tifiable and fails to reveal the underlying neural strategies 
governing muscle control. Consequently, coaches struggle 
to pinpoint the root causes of technical deficiencies, such 
as muscular redundancy, faulty activation sequences, or 
compensatory movements, which impedes the develop-
ment of precise and individualized training programs. 

The muscle synergy hypothesis is an important the-
ory that explains how the central nervous system (CNS) 
coordinates multiple muscles to generate coordinated 
movement, providing a key theoretical framework for un-
derstanding motor coordination (Mussa-Ivaldi, 1988). Its 
core premise is that the CNS does not control each muscle 
independently, but rather combines a small number of pre-
defined muscle synergy modules to effectively reduce 
complexity and redundancy in motor control, thereby 
achieving efficient organization and regulation of multi-
muscle activity. This mechanism is considered a funda-
mental strategy employed by the nervous system to address 
the "degrees of freedom problem". The CNS primarily co-
ordinates movement execution through two modes: (1) se-
lectively activating specific muscle modules, and (2) regu-
lating a set of fundamental functional modules, each con-
sisting of weighted interactions among multiple muscles. 
These modules achieve motor coordination by working to-
gether through temporal and spatial synchronization to 
complete specific motor tasks (Safavynia et al., 2011). By 
decomposing surface electromyography (sEMG) signals 
from multiple muscles, muscle synergy patterns can be ex-
tracted and represented as motor modules (weights as-
signed to each muscle) and motor primitives (degree of ac-
tivation over time) (Cheung et al., 2009). This allows for a 
quantitative analysis of the modular organization princi-
ples of the CNS during different motor tasks, thereby re-
vealing the underlying coordination strategies. 

The muscle synergy theory has been widely applied 
in sports science, revealing both commonalities and spe-
cific characteristics in neuromuscular control across differ-
ent sports. Research indicates that human motor control re-
lies on flexible combinations of shared synergy modules 
and task-specific modules (Mussa-Ivaldi, 1988). On one 
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hand, the central nervous system adapts to various task de-
mands using a limited set of synergy modules. For in-
stance, athletes demonstrate highly similar synergy pat-
terns during frog jumping, swimming, and walking 
(d’Avella et al., 2003), and cyclists exhibit shared synergy 
patterns in lower limb movements (Hug et al., 2010). On 
the other hand, specific technical movements require 
unique synergy modules to meet their biomechanical de-
mands, such as the coordinated activation of rotator cuff 
and trunk rotation muscles during baseball pitching (Ao-
yama et al., 2022), the synergistic coordination of upper 
and lower limbs along with core muscles in basketball 
shooting (Fan et al., 2024), and the phase-dependent syn-
ergy of supraspinatus, serratus anterior, and infraspinatus 
muscles during badminton overhead smashes (Barnamehei 
et al., 2018). However, muscle synergy patterns show in-
ter-individual variability when performing identical motor 
tasks, attributable to differences in athletic experience, 
physiological structure, or technical style (Mussa-Ivaldi, 
1988). For example, skilled gymnasts show individualized 
timing and intensity of muscle activation during high-bar 
swings (Frère and Hug, 2012), and while expert baseball 
pitchers share fundamental synergy modules during pitch-
ing, their temporal activation patterns of upper limb mus-
cles exhibit individual variations (Aoyama et al., 2022). 
These differences reflect the nervous system's capacity to 
maintain functional flexibility in local muscle activation to 
achieve functional goals, thereby balancing stability and 
adaptability in motor control. 

As an open-skill sport, lower-limb coordination 
control in table tennis comprises three continuous phases: 
backswing, forward, and backward, each imposing distinct 
demands on synergy strategies (Tian and Xiao, 2024). The 
backswing phase is characterized by moderate lower-limb 
flexion and a backward shift of the body center of gravity 
to the rear foot, preloading the body for subsequent force 
generation. The forward phase requires a rapid lower-limb 
extension coordinated with trunk rotation to facilitate the 
transfer of momentum from the lower to upper body. The 
backward phase demands quick adjustments in footwork 
and body position to prepare for the next stroke (He et al., 
2022). The execution of this action may rely on the recruit-
ment of both shared synergy modules and task-specific 
modules; however, the underlying lower-limb synergy 
mechanisms remain unclear. Furthermore, inter-individual 
differences in muscle synergy patterns are observed even 
when performing the same motor task. These differences, 
potentially arising from factors such as training experience, 
body structure, or technical style, manifest as personalized 
adaptations in the synergy structure or activation timing. 
For instance, skilled gymnasts exhibit individualized mus-
cle activation patterns during high-bar swings (Frère and 
Hug, 2012), and baseball pitchers, while sharing basic syn-
ergy modules, show individual variations in the activation 
timing of upper-limb muscles (Aoyama et al., 2022). In ta-
ble tennis strokes, differences among athletes in backswing 
amplitude, force application during the forward, and back-
ward rhythm may also lead to personalized characteristics 
in the recruitment order, intensity modulation, and phase 
transition strategies of lower-limb synergy modules 
(Bańkosz and Winiarski, 2020). This flexibility reflects the 

nervous system's adaptive regulation of local muscle      
control to achieve functional goals, thereby establishing a 
dynamic balance between stability and variability. Conse-
quently, a deep understanding and targeted development of 
individualized muscle synergy patterns are crucial for en-
hancing stroke quality and movement stability in athletes.  

The forehand topspin stroke, one of the most fre-
quently used and aggressive offensive techniques in table 
tennis (Bańkosz et al., 2020), plays a crucial role in win-
ning matches. The effectiveness of this movement is highly 
dependent on efficient and coordinated control initiated 
from the lower limbs, particularly during the force genera-
tion and transmission. However, a systematic understand-
ing of the structural characteristics of lower-limb synergy 
patterns and their individual variations during players’ 
forehand topspin stroke, from the perspective of muscle 
synergy theory, remains lacking (Mussa-Ivaldi, 1988).  

Therefore, based on the muscle synergy theory, this 
study collected surface electromyography (sEMG) signals 
from the lower limbs of table tennis players during the fore-
hand topspin strokes to extract the corresponding muscle 
synergy patterns. It aims to systematically analyze the co-
ordination strategies across the movement, focusing on 
both the composition of motor modules and their temporal 
activation patterns, and to compare individual variations 
among athletes, thereby providing both a theoretical basis 
and practical guidance for making targeted training pro-
grams for athletes. 
 
Methods 
 
Participants 
Ten right-handed male table tennis players were randomly 
recruited from China Table Tennis College (Age: 20.70 ± 
2.00 years; Height: 177.80 ± 5.80 cm; Weight: 71.75 ± 7.54 
kg; Training experience: 12.80 ± 2.96 years; Skill level: 
National Grade one). The handedness of players was estab-
lished according to which hand was used to hold the racket, 
and the foot on the same side with the handedness was con-
sidered as the footedness (Peters and Murphy, 1992). The 
inclusion criteria for participants were: (1) in good health 
condition, (2) no lower limb joint injuries within the past 
three months, and (3) capable of performing moderate-to-
high intensity exercise training. This study followed the 
guidelines of the Declaration of Helsinki and was approved 
by the Ethics Committee of Shanghai University of Sport 
(Approval No.: 102772024RT1780). Prior to the experi-
ment, all participants were informed of the testing proce-
dures and provided written informed consent. 
 

Data collection instruments 
To investigate lower limb muscle synergy during forehand 
topspin strokes in table tennis players, both kinematic and 
electromyographic (EMG) data were collected. The exper-
imental ball was DHS D40+ (3-star) of Double Happiness 
Company (DHS). The table and rackets used in this exper-
iment were Rainbow table made by DHS and Timo Boll-
ZLCarbon, separately. The racket was wrapped with red 
rubber on one side while black on the other side. A Serving 
machine (V-989H, Nittaku) was employed for ball delivery 
at  a frequency of 25 balls per minute, with parameters set
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                                  Figure 1. Three phases of stroke process. 

 
as follows: upper wheel rotation speed at level 7 (10-level 
scale, higher numbers indicating faster speed) and lower 
wheel rotation at level 3. And it was positioned approxi-
mately 30 - 40 cm directly behind the center of the table’s 
end line, with the ball outlet around 100 cm above the 
ground. 
 

 

  
    

 
 
 

      Figure 2. EMG for 8 muscles. 
 

Kinematic data were collected using a Qualisys 3D 
motion capture system (Oqus700+, Qualisys, Gothenburg, 
Sweden) at 200 Hz sampling frequency. A total of 50 re-
flective markers (14mm diameter infrared spheres) were 
attached to participants. The captured motion data were 
processed in Visual 3D software (C-Motion, Inc., German-
town, MD, USA) for modeling, with the stroke process di-
vided into three phases: (A) backswing, (B) forward, and 
(C) backward (Figure 1) (Zheng et al., 2021). EMG signals 
were recorded using a wireless surface EMG system 
(NORAXON, USA) at 2000 Hz sampling frequency, cap-
turing muscle activity from eight lower limb muscles on 
the right during stroke execution (Iino, 2022): gluteus max-
imus (GMax), gluteus medius (GMed), biceps femoris 

(BF), rectus femoris (RF), vastus medialis (VM), tibialis 
anterior (TA), lateral gastrocnemius (LG), and soleus (Sol) 
(Figure 2). 
 

 
 

 

 
 

              Figure 3. Experimental setup. 
 
Experimental set up 
The experiment was conducted in the Biomechanics La-
boratory at Shanghai University of Sport. The Qualisys 3D 
motion capture system and NORAXON surface electromy-
ography (sEMG) system were used to synchronously col-
lect kinematic data and lower limb muscle EMG data dur-
ing table tennis players’ forehand topspin strokes. The two 
systems were synchronized using a trigger synchronization 
box. The experimental setup was shown in Figure 3. 
 
Experimental protocol 
The experimental flowchart was illustrated in Figure 4. 
Prior to data collection, the high-speed motion capture sys-
tem was calibrated using an L-shaped calibration frame. 
Participants then donned compression shirts and shorts, af-
ter which research staff attached markers and EMG sensors 
on relevant anatomical landmarks according to the muscu-
loskeletal model. Before sensor placement, the skin was 
prepared by cleaning and shaving to reduce impedance at 
the electrode-skin interface. Surface EMG sensors contain-
ing four silver-bar electrodes (diameter: 1mm, length: 
10mm, inter-electrode distance: 10mm) were then attached 
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Figure 4. The experimental flowchart. 
 
to the eight target muscles shown in Figure 2. After 5-mi-
nute warm-up, each participant was asked to perform five 
forehand high-quality topspin strokes during the formal 
test, with 30-second rest interval between each trial. 
Strokes with the ball hitting the net or out of the table were 
considered to be invalid. 
 
Data analysis 
The EMG signals were processed using MATLAB soft-
ware (MathWorks, 2024b, USA). The EMG signals from 
the eight muscles were processed through the following 
steps: band-pass filtering (20 - 450Hz), high-pass filtering 
using a fourth-order digital Butterworth filter with a cutoff 
frequency of 40 Hz (Messier et al., 2005), and full-wave 
rectification. Signal smoothing was then performed 
through low-pass filtering with a fourth-order digital But-
terworth filter at a 15 Hz cutoff frequency (Goryachev et 
al., 2011). The duration of each stroke (from backswing in-
itiation to backward completion) was normalized to 201 
data points using cubic spline interpolation (Aoyama et al., 
2022). The raw signals were normalized relative to the 
peak amplitude of each trial, and the averaged values were 
calculated across five repeated trials. 
 
Non-negative Matrix Factorization (NMF) 
The non-negative matrix factorization (NMF) algorithm 
was employed to analyze muscle synergies from surface 
electromyography (sEMG) signals in this study. The EMG 
signals from eight muscles were normalized to balance the 
variability of muscle activity levels, facilitating subsequent 

extraction of motor module composition and their temporal 
activation patterns. The analysis was performed using 
MATLAB's Statistics and Machine Learning Toolbox, fol-
lowing the mathematical model proposed by d'Avella 
(d’Avella et al., 2003), as shown in Equation 1. In this 
model, Wi represents the contribution weight (ranging [0, 
1]) of each muscle within the i-th motor module, while ci 
reflects the temporal activation patterns of the correspond-
ing motor module. 
 

M=c1W1+c2W2+∙∙∙+cnWn   (Equation 1) 
 

This study adopted a multi-dimensional optimization ap-
proach to comprehensively evaluate computational results 
across different numbers of motor modules (ranging from 
1 to 7) to determine the optimal number of modules. The 
algorithm's termination conditions were set as follows: the 
computation ceased when either the sum of squared recon-
struction errors fell below 10-6 or the number of iterations 
reached 500 (Israely et al., 2017). To enhance the reliabil-
ity of the results, each decomposition dimension was sub-
jected to 20 independent computational repetitions to ef-
fectively mitigate the risk of local optima (Hagio et al., 
2021). Additionally, the variance accounted for (VAF) was 
calculated to quantify the goodness of fit between the 
measured and reconstructed data for each number of mod-
ules. The optimal number of modules was defined as the 
minimum number of modules that achieved a VAF greater 
than 90%, with additional modules contributing less than 
5% to the VAF (Frère and Hug, 2012). 
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The VAF was calculated using the following for-
mula: 

 

VAF=ቆ1-
∑ ∑ ൫ei,j൯

2n
j=1

p
i=1

∑ ∑ ൫Ei,j൯
2n

j=1
p
i=1

ቇ×100ሾ%ሿ   (Equation 2) 

 
Here, Ei, j corresponds to the actual EMG signal of the i-th  
muscle channel at time sample j, while ei,j represents the 
reconstructed EMG signal generated from the linear com-
bination of synergy activation coefficients and synergy 
vectors. The parameters p and n are the number of muscle 
channels and time samples, respectively. The numerator 
sums the squared residuals between the original and recon-
structed signals across all muscles and time points, whereas 
the denominator reflects the total variance in the original 
EMG data. 
 
Cluster analysis 
Based on the similarity of muscle composition, the motor 
modules of 10 athletes were clustered using k-means anal-
ysis (Steele et al., 2015). The maximum number of itera-
tions was set to 50 (Kuntze et al., 2018). To account for the 
influence of initial cluster centroids on the k-means solu-
tion, the clustering procedure was repeated 10 times with 
different initial centroids (Kuntze et al., 2018). 
 
Testing the similarity of motor module composition 
Cosine similarity (CS) analysis was employed to examine 
the similarity of motor module composition among athletes 
(Hagio et al., 2021). CS represents the inner product of two 
paired module composition vectors normalized to unit 
length, which corresponds to the cosine of the angle be-
tween the vectors. Values closer to 1 indicate higher simi-
larity. The CS value was calculated for motor module com-
position between every pair of athletes. Two motor mod-
ules with CS > 0.8 were defined as similar (Oliveira et al., 
2014). 
 
Temporal activation patterns 
The similarity of temporal activation patterns among ath-
letes was calculated using the same method as for motor 
module composition similarity. The contribution of each 

cluster to each stroke phase was determined by calculating 
the percentage of the area under the activation curve (acti-
vation area) for each phase relative to the total activation 
area. 
 
Statistical analysis 
All statistical analyses were performed using SPSS 26.0 
(IBM Corp., Armonk, NY, USA), with the significance 
level set at α = 0.05. The Friedman test was employed to 
analyze the differences in module composition and tem-
poral activation pattern similarity among clusters, as well 
as the differences in activation area across different stroke 
phases within each cluster. Bonferroni correction was ap-
plied for multiple comparisons. 
 
Results 
 
Number of motor modules 
The EMG activities were analyzed using non-negative ma-
trix factorization (NMF), and the average VAF values for 
1-7 motor modules across all 10 athletes were calculated, 
as shown in Figure 5 (data presented as mean ± standard 
deviation). The results demonstrated that when three motor 
modules were employed, all 10 table tennis players exhib-
ited VAF values exceeding 90% (mean = 93.8%, SD = 
1.91). Notably, three athletes achieved a VAF value ex-
ceeding 90% VAF using only two motor modules. Conse-
quently, a total of 27 motor modules were ultimately ex-
tracted (two modules each for these three athletes and three 
modules each for the remaining seven athletes). 
 
Composition of the motor modules 
The optimal number of clusters (k) was determined by cal-
culating silhouette scores for different k-values in the clus-
ter analysis (Oliveira et al., 2014), with the k-value yield-
ing the highest mean silhouette score identified as the op-
timal solution (Table 1). When the cluster number k was 
set to 3, the highest silhouette score was achieved (Table 
1), indicating that a motor module number of 3 most 
closely approximates the actual muscle synergy patterns in 
athletes. 

  
 

 
 

                                     Figure 5. Relationship between the number of motor modules and mean VAF (%). 
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Table 1. Silhouette scores for different number of clusters. 
Number of clusters 2 3 4 5
Silhouette score (mean ± SD) 0.498 ± 0.098 0.520 ± 0.090 0.454 ± 0.053 0.416 ± 0.042

 
 

 
 

 
 

Figure 6. Motor module compositions during stoke. 
 

Based on the optimal clustering results, the compo-
sition of the three identified motor modules was further an-
alyzed, as shown in Figure 6. This figure illustrated the 
weight distribution of eight lower limb muscles within the 
motor modules across all 10 athletes (data presented as 
mean ± standard deviation). Specifically, Cluster 1 showed 
higher activation weights in the RF and VM, Cluster 2 ex-
hibited greater activation weights in the GMax, GMed, BF, 
and TA, and Cluster 3 demonstrated predominant activa-
tion weights in the LG and Sol. 
 
Inter-individual similarity of motor module composi-
tion 
The similarity of motor module composition among all ath- 

letes was evaluated using cosine similarity (CS) analysis, 
with the results presented in Figure 7. Each cell in the fig-
ure represents the CS value between every pair of motor 
modules. Results revealed that athletes within Cluster 2 ex-
hibited the highest degree of similarity in motor module 
composition, while those in Clusters 1 and 3 demonstrated 
relatively lower inter-individual similarity. 

Friedman test was used to compare the distributions 
of cosine similarity (CS) values between two individual 
athletes within each cluster, with the results presented in 
Figure 8. The results revealed that the inter-individual sim-
ilarity in Cluster 2 (CS = 0.92) was significantly higher 
than that in both Cluster 1 (CS = 0.82) and Cluster 3 (CS = 
0.80) (F (2, 242) = 16.929, p < 0.001). 

 
 

 
 
 

Figure 7. Inter-individual similarity in motor module compositions among all ten players. 
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Figure 8. The inter-individual similarity of motor module 
composition among the three clusters. 

 
Temporal activation pattern 
The temporal activation patterns corresponding to the mo-
tor modules, as derived via the NMF algorithm, were 
shown in Figure 9. The results revealed that the muscle ac-
tivation intensities of motor modules within all three clus-
ters peaked during different phases of the stroke. Cluster 1  
reached peak activation during the mid-to-late forward 
phase, Cluster 2 showed peak activation in the early for-
ward phase, and Cluster 3 demonstrated a biphasic activa-
tion pattern, peaking during both backswing and backward 
phases. 
 
Inter-individual similarity of temporal activation pat-
terns 
The similarity of temporal activation patterns among all 
athletes was evaluated using cosine similarity (CS) analy-
sis, with the results presented in Figure 10. The results 
showed that all three clusters exhibited moderate inter-in-
dividual similarity in temporal activation patterns (CS 
range: 0.6 - 0.8). Cluster 2 (CS = 0.63) demonstrated sig-
nificantly lower similarity compared to Cluster 3 (CS = 
0.80) (F (2, 242) = 10.993, p < 0.01). 
 
Activation areas of different clusters across different 
stroke phases 
Friedman test was used to compare the differences in acti-
vation  areas among clusters across different stroke phase,  

with the results presented in Figure 11. The results revealed 
that during the backswing phase, the activation areas of all 
clusters were relatively uniform, with no significant differ-
ences observed among them (p > 0.05). In the forward 
phase, the activation area of Cluster 2 was significantly 
larger than that of Cluster 3 (p < 0.05), while no significant 
differences were detected between Cluster 1 and Clusters 2 
or 3. During the backward phase, the activation area of 
Cluster 3 was significantly greater than that of Cluster 2 (p 
< 0.05). 
 

 

 

 
 

Figure 10. The inter-individual similarity of temporal activa-
tion patterns within the three clusters during the stroke. **p 
< 0.01. 
 
Discussion 
 
This study employed NMF-based muscle synergy analysis 
to extract three fundamental motor modules underlying 
lower limb muscle activity during forehand topspin strokes 
in table tennis players. The results indicate that all athletes' 
lower-limb synergy patterns can be categorized into three 
functional clusters, with the silhouette score from cluster 
analysis confirming the validity of this classification. This 
suggests that the CNS primarily simplifies motor control 
through these three basic modules (Mussa-Ivaldi, 1988). 
Regarding module utilization, seven athletes fully recruited 
all three modules during the stroke, while the remaining 
three athletes used only two of the three modules,         
which reflects individual variations in motor execution. 

 
 

 

 
 

Figure 9. Temporal activation patterns of the three intra-cluster motor modules during the stoke. 
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Figure 11. The percentage distribution of total activation areas among the three clusters during the three phases of the stroke. 
*p < 0.05, **p < 0.01. 
 
Further analysis revealed that the three motor modules ex-
hibit distinct functional specialization across different 
phases of the stroke: (1) during the backswing phase, the 
movement of lower limbs was coordinated by Clusters 1, 
2, and 3; (2) during the forward phase, the movement of 
lower limbs was primarily driven by Clusters 1 and 2; and 
(3) during the backward phase, the movement of lower 
limbs was mainly controlled by Cluster 3. These findings 
revealed the modular structure and phase-specific charac-
teristics of lower-limb coordination control during table 
tennis forehand topspin strokes, thereby providing a basis 
for understanding its coordination strategies. 

Cluster 1 consists of the RF and VM, which primar-
ily contribute to hip flexion and knee extension. The acti-
vation peak of this cluster occurred during the mid-to-late 
forward phase when the right (supporting) leg rapidly tran-
sitions from slight flexion to extension. The RF and VM 
work synergistically to extend the knee joint while coordi-
nating with hip joint movements to shift the center of grav-
ity forward, thereby optimizing the efficiency of ground re-
action force generation. Notably, the RF serves as the dom-
inant muscle, generating upward and forward trunk motion 
to provide the primary power source for the forward stroke. 
Cluster 2 comprises the GMax, GMed, BF, and TA, reach-
ing peak activation during the early forward phase. These 
muscles primarily contribute to hip extension and external 
rotation. Specifically, the GMax and BF work synergisti-
cally to drive hip extension and external rotation, generat-
ing vertical ground reaction forces, while the TA assists in 
ground push-off production through dorsiflexion control. 
During the early forward phase, the right ankle rapidly 
transitions from dorsiflexion to plantarflexion. While the 
LG and Sol dominate explosive plantarflexion, the TA 
modulates plantarflexion speed through eccentric contrac-
tion to prevent excessive foot inversion, ensuring efficient 
force transfer along the sagittal plane. Additionally, the 
GMed maintains pelvic stability in the coronal plane via 
hip abduction torque, preventing trunk lateral tilt and en-
suring swing trajectory precision. These findings align 
with Le Mansec (Le Mansec et al., 2017), who also re-
ported strong activation of the BF and GMax during fore-
hand topspin strokes. The present study further refines the 
dynamic activation characteristics and synergistic patterns 
of these muscles across different stroke phases. 

Cluster  3  consists  of the LG and Sol, exhibiting a  

double activation pattern during the backswing and back-
ward phases. During the backswing phase, the Sol main-
tains arch tension through isometric contraction while pre-
activating ankle plantarflexion potential energy. Concur-
rently, the LG regulates knee flexion velocity through mild 
eccentric contraction to store elastic energy. In the back-
ward phase, this module was reactivated: the LG and Sol 
work synergistically through eccentric contraction to ab-
sorb landing impact forces. This synergistic mechanism 
not only achieves efficient energy dissipation but also pro-
vides essentially dynamic stability for consecutive strokes. 
These findings corroborate the study of He (He et al., 
2022), who similarly observed strong activation of peri-an-
kle muscles during backward and their critical role in foot 
stabilization. The current study further clarifies the specific 
mechanisms by which the LG and Sol regulate knee-ankle 
joint control during impact absorption. Compared to previ-
ous studies, by identifying the key muscles and their syn-
ergistic patterns in ankle motion control, this study pro-
vides new theoretical insights into the precise neuromuscu-
lar regulation mechanisms during table tennis forehand 
strokes. 

The results revealed that seven of the ten athletes 
used three synergy patterns during the forehand topspin 
stroke, while the other three used only two of the three pat-
terns. According to the muscle synergy theory (Mussa-
Ivaldi, 1988), prolonged training can optimize neuromus-
cular control strategies, leading to the development of more 
concise and stable synergy patterns in athletes (d’Avella et 
al., 2003). Since the ten athletes demonstrated nearly iden-
tical skill levels, the observed variations in their number of 
synergy modules do not reflect the superiority of one strat-
egy over another. Rather, these variations highlight the 
plasticity and diversity of the human nervous system when 
solving complex motor tasks. This finding carries signifi-
cant implications for training practices: coaches should not 
strive for all athletes to imitate a single movement pattern. 
Instead, they should respect individual variability and 
guide athletes to discover and optimize their most efficient 
neuromuscular synergy strategies, thereby maximizing 
their unique athletic potential. 

Inter-cluster comparisons revealed high inter-indi-
vidual similarity in motor module composition across all 
clusters, whereas temporal activation patterns exhibited 
lower similarity. This finding is consistent with the muscle 
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synergy theory (Mussa-Ivaldi, 1988), which suggests that 
the central nervous system may reuse consistent spatial 
synergy modules while flexibly adjusting their temporal 
activation patterns to meet different movement demands 
(d’Avella et al., 2003). Further evidence indicates that as 
motor proficiency improves, the temporal overlap of syn-
ergistic activation decreases (Kaufmann et al., 2024), and 
elite athletes demonstrate greater flexibility in adjusting 
muscle activation strategies to optimize movement stabil-
ity (Pan et al., 2024). This indicates that while different ath-
letes maintain highly consistent core muscle combinations 
when executing forehand topspin strokes, their temporal 
activation patterns serve as the key distinguishing factor 
reflecting individual technical style and variation. Among 
these, Cluster 2 exhibits the highest inter-individual simi-
larity in module composition, yet the lowest similarity in 
temporal activation patterns. The reason is that Cluster 2, 
as the primary force-generating module during the forward 
phase, need to meet the rigid biomechanical demands of 
rapid hip extension and external rotation. This results in 
low variability in spatial composition due to cross-individ-
ual anatomical and functional consistency. Conversely, 
owing to the adjustable timing characteristics of table ten-
nis strokes, athletes employ different temporal strategies 
during the forward to complete the stroke, leading to sig-
nificant inter-individual variations in temporal activation 
patterns. Therefore, this suggests that during the basic 
training stage, coaches should emphasize the standardiza-
tion of the lower limb force production structure to ensure 
athletes develop a correct spatial synergy foundation. In the 
advanced stage, athletes should be permitted, and even en-
couraged, to make personalized adjustments in the tem-
poral domain to adapt to their tactical style or physical at-
tributes. 

From the perspective of temporal activation pat-
terns, table tennis forehand topspin strokes exhibit multi-
peak activation patterns similar to badminton smashes 
(Barnamehei et al., 2018), which differ distinctly from 
baseball throwing (Aoyama et al., 2022) and basketball 
shooting (Fan et al., 2024) that emphasize single maximal 
power output with clearly defined phase boundaries. Dur-
ing forehand topspin strokes, players must maintain stroke 
continuity during rapid directional changes, involving re-
peated cycles of elastic energy storage-release-restorage. 
This necessitates multiple activations of the same cluster 
within a movement cycle, explaining why Cluster 3 was 
activated twice during the backswing and backward 
phases. Furthermore, kinetic overlap in the backswing and 
forward phases (e.g., maintaining backward weight shift 
during early forward) forces partial co-activation of Cluster 
1 (hip flexion) and Cluster 2 (hip extension). This indicates 
that the coordination of the lower limbs during table tennis 
forehand topspin strokes does not rely on maximizing the 
intensity of a single synergy module, but rather achieves 
movement continuity and energy efficiency through the 
temporal coupling and repeated recruitment of multiple 
modules. Thus, training design should emphasize the de-
velopment of multi-peak activation capability, particularly 
the ability to rapidly recover after a stroke and prepare for 
continuous force generation. This finding provides a theo-
retical basis for solving common technical issues such as 

"disconnected movement" and "slow backward" in train-
ing. 

This study confirms that during forehand topspin 
strokes, table tennis players' lower limb muscle activity is 
organized into three motor modules, demonstrating tem-
poral characteristics of multiple activations within a single 
movement cycle. Through precise temporal coupling and 
intensity modulation, these modules achieve coordinated 
force production, forming an efficient energy transfer 
chain. This research reveals that while maintaining a stand-
ardized lower-limb movement structure, athletes can opti-
mize movement economy and stroke effect by finely regu-
lating temporal parameters. This regulatory ability is par-
ticularly evident during the multi-module coordination and 
potential-to-kinetic energy conversion in the forward 
phase. The study translates the abstract concept of "coordi-
nation" into two quantifiable dimensions, spatial modules 
and temporal activation, providing coaches with both a the-
oretical framework and practical guidance for precisely di-
agnosing technical deficiencies and implementing person-
alized training programs. 

 

Conclusion 
 
During table tennis forehand topspin strokes, the lower 
limb muscles exhibited three fundamental synergistic pat-
terns: (a) Rectus femoris (RF) and vastus medialis (VM); 
(b) Gluteus maximus (GMax), gluteus medius (GMed), bi-
ceps femoris (BF), and tibialis anterior (TA); (c) Lateral 
gastrocnemius (LG) and soleus (Sol). The three synergy 
patterns demonstrate phased specialization, activate multi-
ple times within a single cycle, and work together in a dy-
namic interplay: during the backswing phase, all three syn-
ergies were co-activated, while the forward phase was 
dominated by Synergies 1 and 2, and the backward phase 
was solely controlled by Synergy 3. Athletes can optimize 
performance by precisely adjusting temporal parameters 
while maintaining a standardized lower-limb movement 
structure, a regulatory capability particularly evident dur-
ing the forward phase. 
 
Practical implications 
This study reveals that athletes can achieve stable forehand 
topspin strokes through coordinated activation of three 
lower-limb motor modules. Therefore, modular training is 
recommended to enhance stroke quality, such as strength-
ening RF/VM via weighted leg extensions, activating 
GMax/GMed via single-leg deadlifts, and developing 
LG/Sol using box jump exercises. 

Based on the finding that athletes achieve coordi-
nated force generation through timed coupling of three 
lower-limb modules, training programs should emphasize 
the development of multi-peak activation capability, par-
ticularly focusing on rapid recovery after the stroke and 
preparation for consecutive force generation. For example, 
continuous attack training combined with footwork drills 
can effectively develop an athlete's ability to maintain ki-
netic chain integrity and achieve efficient recovery during 
dynamic movements. 

Research indicates that athletes enhance perfor-
mance  by   regulating   muscle   activation   timing     and                 
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intensity. A phased training approach is recommended: be-
ginners should first establish proper activation patterns 
through standardized drills, then progressively refine tem-
poral control using variable-rhythm and randomized deliv-
ery training. This methodology helps to develop individu-
alized neuromuscular control strategies while maintaining 
technical standardization. 
 
Limitations 
This study only selected ten male table tennis players. This 
may present certain limitations in terms of sample repre-
sentativeness and the generalizability of the conclusions. 
Future research should include a larger sample size and in-
vestigate the muscle synergies of both male and female 
players. This study only analyzed the muscle synergies in 
the lower limb of the racket-holding side. Future research 
could also include both lower and upper limb muscles to 
provide a more comprehensive understanding of whole-
body coordination patterns. This study did not collect 
stroke effect data. Future research could simultaneously 
record the stroke outcome data to further analyze the rela-
tionship between the muscle synergy patterns and stroke 
effect. 
 
Acknowledgements  
The authors would like to thank the subjects from China Table Tennis 
College of Shanghai University of Sport for their friendly cooperation in 
the kinematic and EMG data collection tests. The datasets generated 
during the current study are not publicly available but are available from 
the corresponding author upon reasonable request. The authors declare 
that they have no conflict of interest. All experimental procedures were 
conducted in compliance with the relevant legal and ethical standards of 
the country where the study was carried out. The authors declare that no 
Generative AI or AI-assisted technologies were used in the writing of this 
manuscript.  
 
References 
 
Aoyama, T., Ae, K. and Kohno, Y. (2022) Interindividual differences in 

upper limb muscle synergies during baseball throwing motion in 
male college baseball players. Journal of Biomechanics 145, 
111384. https://doi.org/10.1016/j.jbiomech.2022.111384 

Bańkosz, Z. and Winiarski, S. (2018) The evaluation of changes of angles 
in selected joints during topspin forehand in table tennis. Motor 
Control 22(3), 314-337. https://doi.org/10.1123/mc.2017-0057 

Bańkosz, Z. and Winiarski, S. (2020) Kinematic parameters of topspin 
forehand in table tennis and their inter- and intra-individual 
variability. Journal of Sports Science and Medicine 19(1), 138-
148. https://doi.org/10.1155/2020/8413948 

Bańkosz, Z., Winiarski, S. and Malagoli Lanzoni, I. (2020) Gender 
differences in kinematic parameters of topspin forehand and 
backhand in table tennis. International Journal of Environmental 
Research and Public Health 17(16), Article 16.  
https://doi.org/10.3390/ijerph17165742 

Barnamehei, H., Tabatabai Ghomsheh, F., Safar Cherati, A. and 
Pouladian, M. (2018) Upper limb neuromuscular activities and 
synergies comparison between elite and nonelite athletics in 
badminton overhead forehand smash. Applied Bionics and 
Biomechanics 2018, 1-10.  
https://doi.org/10.1155/2018/6067807 

Chen, M.-Z., Wang, X., Chen, Q., Ma, Y., Malagoli Lanzoni, I. and Lam, 
W.-K. (2022) An analysis of whole-body kinematics, muscle 
strength and activity during cross-step topspin among table 
tennis players. International Journal of Performance Analysis in 
Sport 22(1), 16-28.  
https://doi.org/10.1080/24748668.2022.2025712 

Cheung, V. C. K., d’Avella, A. and Bizzi, E. (2009) Adjustments of motor 
pattern for load compensation via modulated activations of 
muscle synergies during natural behaviors. Journal of 
Neurophysiology 101(3), 1235-1257.  

https://doi.org/10.1152/jn.01387.2007 
d’Avella, A., Saltiel, P. and Bizzi, E. (2003) Combinations of muscle 

synergies in the construction of a natural motor behavior. Nature 
Neuroscience 6(3), 300-308. https://doi.org/10.1038/nn1010 

Fan, P., Yang, Z., Wang, T., Li, J., Kim, Y. and Kim, S. (2024) 
Neuromuscular control strategies in basketball shooting: 
Distance-dependent analysis of muscle synergies. Journal of 
Sports Science and Medicine 23, 571-580.  
https://doi.org/10.52082/jssm.2024.571 

Frère, J. and Hug, F. (2012) Between-subject variability of muscle 
synergies during a complex motor skill. Frontiers in 
Computational Neuroscience 6, 99.  
https://doi.org/10.3389/fncom.2012.00099 

Goryachev, Y., Debbi, E. M., Haim, A. and Wolf, A. (2011) The effect of 
manipulation of the center of pressure of the foot during gait on 
the activation patterns of the lower limb musculature. Journal of 
Electromyography and Kinesiology 21(2), 333-339.  
https://doi.org/10.1016/j.jelekin.2010.11.009 

Hagio, S., Nakazato, M. and Kouzaki, M. (2021) Modulation of spatial 
and temporal modules in lower limb muscle activations during 
walking with simulated reduced gravity. Scientific Reports 11(1), 
14749. https://doi.org/10.1038/s41598-021-94201-9 

He, Y., Fekete, G., Sun, D., Baker, J. S., Shao, S. and Gu, Y. (2022) Lower 
limb biomechanics during the topspin forehand in table tennis: A 
systemic review. Bioengineering 9(8), 336.  
https://doi.org/10.3390/bioengineering9080336 

Hug, F., Turpin, N. A., Guével, A. and Dorel, S. (2010) Is interindividual 
variability of EMG patterns in trained cyclists related to different 
muscle synergies? Journal of Applied Physiology 108(6), 1727-
1736. https://doi.org/10.1152/japplphysiol.01305.2009 

Iino, Y. (2022) Validation of lower limb muscle activation estimated 
using musculoskeletal modeling against electromyography in the 
table tennis topspin forehand and backhand.  
https://doi.org/10.30827/Digibug.80316 

Israely, S., Leisman, G., Machluf, C., Shnitzer, T. and Carmeli, E. (2017) 
Direction modulation of muscle synergies in a hand-reaching 
task. IEEE Transactions on Neural Systems and Rehabilitation 
Engineering 25(12), 2427-2440.  
https://doi.org/10.1109/TNSRE.2017.2769659 

Kaufmann, P., Koller, W., Wallnöfer, E., Goncalves, B., Baca, A. and 
Kainz, H. (2024) Increased trial-to-trial similarity and reduced 
temporal overlap of muscle synergy activation coefficients 
manifest during learning and with increasing movement 
proficiency. Scientific Reports 14(1), 17638.  
https://doi.org/10.1038/s41598-024-68515-3 

Kuntze, G., Nettel-Aguirre, A., Ursulak, G., Robu, I., Bowal, N., 
Goldstein, S. and Emery, C. A. (2018) Multi-joint gait clustering 
for children and youth with diplegic cerebral palsy. PLOS ONE 
13(10), e0205174.  
https://doi.org/10.1371/journal.pone.0205174 

Le Mansec, Y., Dorel, S., Hug, F. and Jubeau, M. (2017) Lower limb 
muscle activity during table tennis strokes. Sports Biomechanics, 
1-11. https://doi.org/10.1080/14763141.2017.1354064 

Messier, S. P., DeVita, P., Cowan, R. E., Seay, J., Young, H. C. and Marsh, 
A. P. (2005) Do older adults with knee osteoarthritis place 
greater loads on the knee during gait? A preliminary study. 
Archives of Physical Medicine and Rehabilitation 86(4), 703-
709. https://doi.org/10.1016/j.apmr.2004.05.015 

Mussa-Ivaldi, F. A. (1988) Do neurons in the motor cortex encode 
movement direction? An alternative hypothesis. Neuroscience 
Letters 91(1), 106-111. https://doi.org/10.1016/0304-
3940(88)90257-1 

Oliveira, A. S., Gizzi, L., Farina, D. and Kersting, U. G. (2014) Motor 
modules of human locomotion: Influence of EMG averaging, 
concatenation, and number of step cycles. Frontiers in Human 
Neuroscience 8, Article 335.  
https://doi.org/10.3389/fnhum.2014.00335 

Pan, Z., Liu, L., Li, X. and Ma, Y. (2024) Characteristics of muscle 
synergy and anticipatory synergy adjustments strategy when 
cutting in different angles. Gait and Posture 107, 114-120.  
https://doi.org/10.1016/j.gaitpost.2023.03.010 

Peters, M. and Murphy, K. (1992) Cluster analysis reveals at least three, 
and possibly five distinct handedness groups. Neuropsychologia 
30(4), 373-382. https://doi.org/10.1016/0028-3932(92)90110-8 

Safavynia, S. A., Torres-Oviedo, G. and Ting, L. H. (2011) Muscle 
synergies: Implications for clinical evaluation and rehabilitation 



Zhao and Xiao 

 
 

 

313

of movement. Topics in Spinal Cord Injury Rehabilitation 17(1), 
16-24. https://doi.org/10.1310/sci1701-16 

Steele, K. M., Rozumalski, A. and Schwartz, M. H. (2015) Muscle 
synergies and complexity of neuromuscular control during gait 
in cerebral palsy. Developmental Medicine and Child Neurology 
57(12), 1176-1182. https://doi.org/10.1111/dmcn.12826 

Tian, J. and Xiao, Y. (2024) Research on the difference of stroke 
characteristics and stroke effect between different stroke 
duration of table tennis players. Scientific Reports 14, 25405. 
https://doi.org/10.1038/s41598-024-76802-2 

Xiong, J., Li, S., Cao, A., Qian, L., Peng, B. and Xiao, D. (2022) Effects 
of integrative neuromuscular training intervention on physical 
performance in elite female table tennis players: A randomized 
controlled trial. Plos One 17(1), e0262775.  
https://doi.org/10.1371/journal.pone.0262775 

Zheng, C., Lu, M., Zeng, Y., Hu, M., Geng, X. and Xiao, Y. (2021) The 
impact of wrist joint movement on stroke effect during topspin 
forehand in table tennis. International Journal of Performance 
Analysis in Sport 21(3), 324-335.  
https://doi.org/10.1080/24748668.2021.1885839 

 

Key points 
 
 During table tennis forehand topspin stroke, the lower limb 

muscles exhibited three fundamental synergistic patterns. 
 The three synergy patterns demonstrate phased specializa-

tion, activate multiple times within a single cycle, and work 
together in a dynamic interplay. 

 Athletes can optimize performance by precisely adjusting 
temporal parameters while maintaining a standardized 
lower-limb movement structure, a regulatory capability par-
ticularly evident during the forward phase. 
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