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Abstract

Talent identification (TID) in team sports is complex, influenced
by biological, technical, psychological, and socio-cultural factors.
Machine learning (ML) offers tools to integrate high-dimensional
data, yet its applications in youth TID remain underexplored. Ob-
jectives: To systematically review ML approaches applied to
youth talent identification in team sports, with emphasis on data
domains, algorithms, validation strategies, and interpretability.
Eligible studies included peer-reviewed quantitative research ap-
plying ML to youth athletes (<21 years) in team sports for TID
outcomes. Searches were conducted in PubMed, Scopus, and
Web of Science, supplemented by reference and citation screen-
ing. Extracted data items included input data domains (anthropo-
metric, physical, technical, perceptual-cognitive, psychological,
socio-cultural, and multi-domain), ML approach, validation
methods, performance metrics (e.g., accuracy, AUC, Fl-score),
and interpretability techniques. Risk-of-bias assessment was im-
plemented using PROBAST. From 228 records, 27 studies met
inclusion criteria. Soccer was most studied (n = 13), with others
covering rugby, basketball, cricket, volleyball, and Australian
football. Sample sizes ranged from 21 to 13,876 athletes, predom-
inantly male. Supervised algorithms (Random Forest, gradient
boosting, neural networks, penalized regression) were most com-
mon; some studies used unsupervised clustering. Validation prac-
tices varied, with few employing nested cross-validation or exter-
nal testing. Reported discrimination metrics ranged from modest
to excellent (ROC-AUC = 0.58 - 0.96, depending on model and
context), yet calibration performance (e.g., Brier score, calibra-
tion slope) was rarely reported, and external validation was un-
common. Across studies, predictive accuracy was moderate to
high internally but rarely externally confirmed. Risk of bias was
high in 59 % of studies, mainly due to inadequate analysis and
limited generalizability. Overall, ML shows potential to comple-
ment, not replace, traditional TID approaches - acting as a deci-
sion-support and hypothesis-generation tool that can assist prac-
titioners in early screening, individualized progression modeling,
and evidence-based talent forecasting. To strengthen translational
impact, future research should emphasize transparent reporting,
calibration assessment, and external validation to ensure robust,
applicable ML models for sport talent systems.

Key words: Youth athletes, talent development, predictive mod-
eling, sports analytics, artificial intelligence.

Introduction

Talent identification and development (TID) can be con-
ceptualized as a complex, non-linear, and adaptive system
arising from the continuous interaction of multiple con-
straints (e.g., biological, technical, psychological, environ-
mental, and sociocultural), consistent with ecological dy-
namics (Vaeyens et al., 2008; Seifert et al., 2017; 2022).

This perspective treats athletes and teams as complex adap-
tive systems in which performance emerges from per-
former—environment couplings rather than from any single
determinant, helping explain variability and divergent
pathways to expertise (Seifert et al., 2017; 2022). These
same principles inform the use of machine learning (ML),
as algorithms trained on representative, context-rich data
can better capture the functional - rather than merely de-
scriptive - aspects of performance. Incorporating contextu-
alized variables such as opponent positioning, temporal
constraints, or perceptual-motor demands enables ML
models to infer how athletes adapt to dynamic environ-
ments, thereby aligning data-driven modeling with the eco-
logical validity of real performance contexts (Reis et al.,
2024; Cordeiro et al., 2025).

TID outcomes can be operationally as measurable
indicators of athlete progression, including selection (the
identification or nomination of athletes for higher-level
squads, academies, or representative team) (Larkin and
O’Connor, 2017), advancement (continued inclusion or
promotion within developmental pathways across time); or
retention (sustained participation or non-deselection within
structured development systems) (Giillich, 2014). TID are
central pillars of performance pathways in team sports, yet
they remain challenging due to the multifactorial and long-
term nature of sporting excellence (Vaeyens et al., 2008).
In soccer and other team sports games, early reviews al-
ready emphasized that no single anthropometric, physio-
logical, or psychological attribute uniquely determines fu-
ture elite status, underscoring the need for multidimen-
sional assessment (Williams and Reilly, 2000). Accord-
ingly, comprehensive, multidisciplinary test batteries have
been advocated to distinguish performance levels in youth
players, integrating technical, physical, and perceptual—
cognitive factors (Reilly et al., 2000).

However, conventional selection practices can be
biased by structural and developmental factors (Till and
Baker, 2020). Across sports, annual age-grouping system-
atically produces relative age effects that distort participa-
tion and attainment, with robust meta-analytic evidence
showing substantial over-representation of relatively older
athletes (Cobley et al., 2009). These biases also affect
women’s sport, where relative age effects are prevalent and
can shape pathway opportunities (Smith et al., 2018). In
parallel, differences in growth and biological maturation
are particularly salient in adolescence, where earlier-devel-
oping youth may temporarily appear superior in test batter-
ies, complicating prognostic judgments in talent pathways
(Malina et al., 2015). Longitudinal work further suggests
that while some anthropometric and running measures
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show short-term stability, predictability erodes as the fol-
low-up window lengthens, cautioning against early deter-
ministic selection (Deprez et al., 2015).

From a systems perspective, team sports exhibit
properties of complex adaptive systems in which perfor-
mance emerges from interacting constraints across per-
formers, tasks, and environments, challenging linear pre-
diction (Seifert et al., 2017). This lens encourages practi-
tioners to design representative learning environments and
assess adaptable skill, rather than isolated traits alone
(Woods et al., 2020). Concurrently, the proliferation of
player monitoring - such as global positioning system
(GPS) and inertial technologies - has generated high-vol-
ume, multi-source data that can complement traditional
scouting in talent pathways (Ravé et al., 2020). For youth
programs in particular, such data-rich approaches may help
disentangle transient growth effects from underlying skill
and potential, if analyzed with appropriate modeling strat-
egies.

Machine learning (ML) methods are well suited to
model high-dimensional, nonlinear relationships and to
fuse heterogeneous data streams, and have transformed
predictive analytics across biomedicine in analogous prob-
lems (Topol, 2019). Within sport, researchers have high-
lighted the growing role of artificial intelligence (AI) and
ML for decision support across performance and recruit-
ment domains (Chmait and Westerbeek, 2021). Indeed,
soccer-specific syntheses now document rapid expansion
of ML applications, signaling both opportunity and meth-
odological variability that warrant careful appraisal (Rico-
Gonzalez et al., 2023; Beato et al., 2025).

Within this growing landscape, ML applications in
TID can be conceptually grouped into four possible over-
lapping roles. First, predictive modeling seeks to forecast
future selection, progression, or performance based on
multidimensional athlete data, aligning with conventional
supervised learning paradigms (Altmann et al., 2024). Sec-
ond, clustering and representation learning use unsuper-
vised methods to identify latent groupings or archetypes of
players, informing talent grouping and developmental pro-
filing (Contreras-Garcia et al., 2024; Haan et al., 2025).
Third, longitudinal monitoring leverages sequential or tem-
poral models to track developmental trajectories and mat-
uration dynamics, offering insight into non-linear growth
patterns (Chmait and Westerbeek, 2021). Finally, decision-
support systems integrate these analytic layers into practi-
cal tools that complement coach judgment by providing in-
terpretable, data-informed recommendations (Chmait and
Westerbeek, 2021).

ML applications in youth talent identification are
beginning to emerge, directly targeting selection and ad-
vancement decisions within academies and development
squads (Nassis et al., 2023). Recent work in elite youth soc-
cer used supervised algorithms (e.g., gradient-boosted
trees) to predict selection versus de-selection across age
groups, identifying contributions from speed, change of di-
rection, countermovement jump, aerobic speed reserve,
and technical skill (Altmann et al., 2024). A growing line
of inquiry also examines how socio-biological factors, par-
ticularly the relative age effect and maturation status, may
influence data-driven decision-making (Finnegan et al.,

2024). ML offers a means to quantify, and potentially mit-
igate, these entrenched selection biases - depending on how
data are sampled, labelled, and validated - thus serving as
a test case for fairness and transparency in predictive mod-
elling (Reis et al., 2024). Multidisciplinary approaches
have also combined psychosocial and physiological
measures with ML to predict youth rugby union selections,
illustrating the value of integrating non-physical determi-
nants (Owen et al., 2022). Beyond supervised prediction,
unsupervised learning has been explored to derive role-ag-
nostic player groupings from match running data, offering
alternative structures for evaluation and development plan-
ning (Haan et al., 2025). At the position-specific level, ML
classifiers have been applied to discriminate performance
tiers in professional goalkeepers, demonstrating how algo-
rithmic profiling can inform specialized talent evaluation
(Jamil et al., 2021).

Yet, translating these advances into dependable
youth talent decisions requires vigilance about methodo-
logical pitfalls common to prediction research (de Jong et
al., 2021). Small sample sizes and inadequate validation in-
flate estimated performance, highlighting the importance
of robust procedures such as nested cross-validation and
strict separation of training and testing (Vabalas et al.,
2019). Data leakage - through feature selection on the full
dataset, reusing individuals across folds, or inadvertent
temporal contamination - can markedly overstate model
accuracy and undermine reproducibility (Kapoor and Na-
rayanan, 2023). Evaluation must also account for class im-
balance and choose metrics judiciously, given differing
sensitivities of ROC and precision—recall analyses under
skewed outcomes typical of selection tasks (Richardson et
al., 2024). For clinical-style prediction problems, inde-
pendent external validation remains essential to estimate
generalizability prior to deployment in new cohorts or
clubs (Gallitto et al., 2025). Aligned with broader predic-
tion-model science, contemporary reporting guidance
(TRIPOD+AI) and risk-of-bias tools (e.g., PROBAST)
provide structured expectations for transparency, repro-
ducibility, and appraisal of ML-based models (Wolff et al.,
2019; Collins et al., 2024).

Several narrative and systematic reviews have syn-
thesized traditional and methodological approaches to tal-
ent identification (TID) in team sports, but without a spe-
cific emphasis on ML techniques and their unique chal-
lenges (Barraclough et al., 2022). Other reviews focus on
ML in soccer broadly or on injury risk prediction, rather
than on youth talent identification across multiple team
sports and data modalities (Nassis et al., 2023; Leckey et
al., 2025). Likewise, sport-specific talento identification
syntheses in football underscore multidimensional deter-
minants but do not evaluate the distinct promises and pit-
falls of ML for selection decisions across team sports (Sar-
mento et al., 2018).

Therefore, the purpose of this systematic review is
to map, critically appraise, and synthesize applications of
ML to youth talent identification in team sports, with atten-
tion to data sources, model classes, validation strategies,
interpretability, and risk of bias, consistent with contempo-
rary prediction-model guidance. Conceptually, this review
also examines whether multidomain ML models — integrat-
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ing physical, technical, perceptual-cognitive, and psycho-
social indicators - capture developmental potential more
effectively than single-domain approaches, thereby ad-
dressing how the multidimensional nature of athlete devel-
opment can be represented within predictive frameworks.
Analytically, we also quantify the use of nested versus non-
nested cross-validation procedures to provide a transparent
overview of model evaluation rigor and guide the repro-
ducibility of the synthesis process. Specifically, we aim to
catalog the types of athlete data and ML methods used to
predict selection and advancement in team sports, evaluate
methodological quality, reporting, and validation practices,
summarize model performance, calibration, and generali-
zability, and identify evidence gaps and practical implica-
tions for programs and practitioners seeking to integrate
ML into selection and development processes.

Methods

The review was conducted and reported in accordance with
PRISMA 2020 recommendations to ensure transparent and
reproducible synthesis (Page et al., 2021b). Registration
was conducted on OSF (osf.io/yn895; October 15, 2025).

Eligibility criteria

PICO criteria

Studies were considered eligible if they addressed the use
of ML methods for TID in team sports. Eligibility was de-
fined using a modified PICO framework as follows:

Population (P): Youth athletes (<21 years) engaged
in organized team sports (e.g., soccer, basketball, rugby,
hockey, handball, volleyball, American football, baseball,
and other team sports). Studies were eligible regardless of
competitive level (grassroots, academy, sub-elite, or elite
youth), and no restrictions were imposed on sex. Studies
focusing exclusively on adult/professional-only cohorts or
on individual sports were excluded. We defined “youth” as
athletes <21 years to align with established competitive ti-
ers and developmental transition points in team sports. In
football and other codes, U21 is the terminal youth cate-
gory preceding senior squads; research shows that experi-
ence and performance at U21 best predict subsequent sen-
ior participation compared with earlier youth levels, situat-
ing age 21 as the practical boundary of the youth pathway
(Herrebraden and Bjerndal, 2022). More broadly, youth-
athlete development reviews describe late adolescence and
emerging adulthood (late teens—early 20s) as the period
when maturation, psychosocial development, and role tran-
sitions converge - precisely the window spanned by the
U21 tier - supporting the conceptual placement of <21 as
the end of the formative, pre-senior phase (Varghese et al.,
2022). In studies that included both youth (<21 years) and
adult athletes, inclusion was contingent on whether youth-
specific results could be clearly identified or disaggre-
gated.

Intervention/Exposure (I): Application of ML algo-
rithms (supervised, unsupervised, reinforcement, or hybrid
approaches) to support talent identification or selection
processes (e.g., prediction of selection vs. deselection, pro-
gression to higher competitive levels, role-agnostic player
clustering, or position-specific profiling in youth athletes).

Studies limited to traditional statistical analyses without
ML components were excluded.

Comparators (C): Comparator groups were not
mandatory. Where applicable, comparators could include
traditional scouting, expert coach assessment, or alterna-
tive analytic approaches (e.g., regression, rule-based clas-
sification).

Outcomes (O): Eligible studies had to report at least
one youth TID-related outcome, such as predictive accu-
racy of selection, identification of key features contributing
to progression, classification of athlete profiles, or algorith-
mic discrimination of performance tiers within youth co-
horts. Studies were excluded if ML was applied exclu-
sively to non-TID outcomes (e.g., injury prediction, work-
load monitoring, or tactical analysis), if ML was applied
only in adult/professional samples, or if results were not
disaggregated to allow extraction of youth TID-specific
findings.

Study design and setting

All quantitative empirical studies employing ML algo-
rithms for TID were included, regardless of design (cross-
sectional, longitudinal, retrospective, or prospective).
Proof-of-concept studies, validation studies, and applied
analyses in real-world settings were all eligible. Qualitative
studies, narrative commentaries, editorials, opinion pieces,
and reviews were excluded, though their reference lists
were screened for potential eligible primary studies.

Report characteristics

Only peer-reviewed journal articles were included to en-
sure methodological rigor. Grey literature, preprints, con-
ference abstracts, theses, and unpublished reports were ex-
cluded due to limitations in methodological detail and peer
review. Only studies published in English were considered
eligible. No restrictions were placed on the year of publi-
cation.

Information sources

The literature search was conducted across three major bib-
liographic databases to ensure coverage of relevant studies:
PubMed, Scopus, and the Web of Science Core Collection.
No restrictions were applied with respect to publication
year, study design, or participant age at the search stage.
The final searches of all databases were completed on Oc-
tober 15, 2025.

To complement the electronic database searches,
the reference lists of all studies meeting the eligibility cri-
teria were manually examined to identify additional arti-
cles not retrieved in the initial search. Reference lists of
previous systematic and narrative reviews relevant to talent
identification, sports analytics, or the application of ma-
chine learning in sport were also screened. Furthermore,
backward and forward citation searches were conducted
using the Web of Science Core Collection for all included
studies to capture any additional eligible publications.

No study registers, trial registries, organizational re-
positories, or grey literature sources were searched. Only
peer-reviewed journal publications retrieved through the
databases and reference list searches were included for
screening.
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Search strategy

The search strategy was designed to capture all available
studies addressing the use of ML for TID in team sports.
The strategy combined controlled vocabulary terms and
free-text words related to “machine learning,” “artificial in-
telligence,” and “talent identification” with sport-specific
terms, following iterative piloting and refinement to bal-
ance sensitivity and specificity. The conceptual structure of
the strategy was based on a modified PICO approach, fo-
cusing on the population of team sport athletes and the in-
tervention or exposure of machine learning applications for
talent identification outcomes. The following search strat-
egy was employed: ("machine learning” OR "artificial in-
telligence” OR "deep learning" OR "supervised learning"
OR "unsupervised learning" OR "neural network*" OR
"support vector machine*" OR "random forest*" OR "gra-
dient boosting" OR "learning algorithms" OR "bayesian lo-
gistic regression" OR “random forest" OR "random for-
ests" OR "trees" OR "elastic net" OR "ridge" OR "lasso"
OR "boosting" OR "predictive modeling") AND (talent*
OR "talent identification" OR "talent detection" OR "talent
development" OR "player selection" OR "athlete selection”
OR "talent promotion") AND ("team sport*" OR "soccer"
OR "football" OR "basketball" OR "rugby" OR "handball"
OR "volleyball" OR "hockey" OR "baseball" OR "softball"
OR "lacrosse" OR "water polo").

Selection process

All records identified through database searching were im-
ported into an Excel sheet, and duplicates were removed
prior to screening. Two reviewers independently assessed
the eligibility of studies against the predefined inclusion
and exclusion criteria in title/abstract screening and then in
full-text screening. Disagreements between reviewers were
resolved through discussion. The reasons for excluding
studies at the full-text stage were documented and reported.

Data collection process

Two reviewers independently extracted data from each
study. The extracted information was subsequently com-
pared, and any discrepancies were resolved through discus-
sion. No automation tools or machine learning—based sys-
tems were used for data collection. Only information ex-
plicitly reported in tables, text, or graphs was included.

Data items

The domain of interest was the performance of machine
learning models applied to talent identification in youth
team sports. Within this domain, data were extracted on
predictive or classification performance metrics reported
by each study. These included, where available, overall ac-
curacy, sensitivity (recall), specificity, precision, F1-score,
area under the receiver operating characteristic curve
(AUC-ROC), and area under the precision—recall curve
(AUC-PR). When studies reported multiple metrics, all
available values were collected to allow for a comprehen-
sive synthesis.

Other domains included talent-related predictions
and classifications such as selection versus deselection,
progression to higher competition levels, clustering of
players into performance profiles, and position- or role-

specific identification. Where studies reported longitudinal
prediction outcomes, all time points were collected, and no
restrictions were applied to the follow-up period. In cases
where results were presented using different analysis strat-
egies (e.g., cross-validation folds, test set performance, ex-
ternal validation), all eligible outcomes were extracted,
with priority given to independent test set or external vali-
dation results when synthesizing evidence.

No changes were made during the review process to
the inclusion or definition of outcome domains. All out-
come domains compatible with TID were considered
equally relevant at the data extraction stage. However, in
the interpretation of findings, external validation perfor-
mance and transparent reporting of prediction quality were
considered most critical, as these outcomes are directly
aligned with the review’s objectives of evaluating method-
ological robustness and generalizability.

In addition to outcomes, other variables were ex-
tracted from each study to support subgroup analyses and
contextual interpretation. Study characteristics included
publication year and country of origin. Participant charac-
teristics comprised sample size, sex distribution, age range,
competitive context (e.g., grassroots, academy, or elite
youth), and where available, indicators of biological matu-
ration. Sport type was also recorded. Data characteristics
included the domain of features used (e.g., anthropometric,
physical, technical, perceptual - cognitive, psychosocial, or
multi-domain) and the methods of data acquisition (e.g.,
field-based tests, questionnaires, match-derived tracking
data).

Machine learning-related variables included the
class of algorithms applied (e.g., supervised, unsupervised,
ensemble, deep learning), model development strategies
(e.g., feature selection, dimensionality reduction), training
and validation procedures (e.g., cross-validation, inde-
pendent test set, external validation), and performance met-
rics reported. Where available, reporting of interpretability
approaches (e.g., feature importance, SHapley Additive
exPlanations, Local Interpretable Model-agnostic Explana-
tions) was also extracted. When information was missing
or unclear, we recorded it as “not reported” without making
assumptions.

Study risk of bias assessment

The methodological quality and risk of bias of all included
studies were assessed using the Prediction model Risk Of
Bias Assessment Tool (PROBAST, version 1.0), which is
specifically designed for evaluating studies that develop,
validate, or update predictive models (de Jong et al., 2021).
PROBAST was chosen because machine learning applica-
tions in talent identification constitute predictive modeling
studies, and the tool allows systematic evaluation across
relevant domains. To complement this formal appraisal, we
also considered a broader construct of practical trustwor-
thiness - the extent to which a model’s reported perfor-
mance can be reasonably trusted for real-world decision
support. This concept integrates three key safeguards: (i)
external validation on independent data to test generaliza-
bility; (ii) calibration assessment to ensure probabilistic
predictions correspond to observed outcomes; and (iii)
data-leakage control, referring to methodological steps that
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prevent overlap between training and test information.

The PROBAST framework consists of four do-
mains (Wolff et al., 2019): (i) participants, assessing
whether the study sample is representative and appropriate
for the intended target population; (ii) predictors, evaluat-
ing the definition, measurement, and availability of input
variables; (iii) outcomes, assessing whether outcome defi-
nitions, timing, and measurement were appropriate; and
(iv) analysis, focusing on modeling methods, handling of
overfitting, missing data, validation, and performance re-
porting. Each domain includes signaling questions that
guide judgments of “low,” “high,” or “unclear” risk of bias.
An overall risk of bias judgment was made for each study
by aggregating across domains, with studies classified as
“low risk” only if all domains were rated low. If one or
more domains were judged as high risk, the overall classi-
fication was high; if one or more were unclear with none
rated high, the overall classification was unclear.

Two reviewers independently performed the risk of
bias assessment for each included study. Discrepancies in
judgments were resolved through discussion. All judg-
ments were based exclusively on information reported in
the published articles.

Given the particularities of machine learning re-
search, special attention was given to signaling questions
within the analysis domain, including handling of class im-
balance, prevention of data leakage, adequacy of validation
strategies, and transparency of reporting model perfor-
mance metrics.

Effect measures

For the outcome domain - predictive performance of ma-
chine learning models for talent identification in team
sports - we extracted and reported all performance metrics
provided by the original studies. Given the diversity of ma-
chine learning methods and outcome definitions, no single
effect measure was imposed a priori. Instead, the following
effect measures were prioritized based on their frequency
of use and interpretability in predictive modeling research.

For binary classification outcomes (e.g., selected
vs. deselected, progressed vs. not progressed), the principal
effect measures were overall accuracy, sensitivity (recall),
specificity, precision (positive predictive value), F1-score,
and the area under the receiver operating characteristic
curve (AUC-ROC). Where reported, the area under the pre-
cision—recall curve (AUC-PR) was also extracted to ac-
count for class imbalance, which is common in talent iden-
tification contexts. For multi-class or clustering outcomes
(e.g., player profiles, position-specific categories),
measures such as overall classification accuracy, macro-
and micro-averaged F1-scores, and adjusted Rand index
were extracted.

For continuous outcomes (e.g., predictive regres-
sion of performance scores or advancement probabilities),
effect measures included mean absolute error (MAE), root
mean square error (RMSE), and coefficient of determina-
tion (R?). Where multiple metrics were presented for the
same model, all were recorded, but in synthesis greater em-
phasis was placed on metrics reflecting generalizability,
particularly those derived from independent test sets or ex-
ternal validation cohorts.

No thresholds for minimally important differences

were defined a priori, as such benchmarks do not currently
exist for talent identification in team sports. Instead, results
were interpreted with reference to established conventions
in machine learning research (e.g., AUC-ROC values of
0.50 indicating no discrimination, 0.70 - 0.80 acceptable,
0.80 - 0.90 excellent, and >0.90 outstanding performance)
while acknowledging the limitations of applying generic
thresholds to heterogeneous sporting contexts.

No re-expression of results into alternative effect
measures was required, as extracted metrics were analyzed
in their originally reported form. The choice to retain mul-
tiple performance measures was justified by the heteroge-
neous reporting practices in the field and by the need to
provide a transparent overview of predictive model perfor-
mance rather than privileging a single effect measure.

Synthesis methods

Data from included studies were extracted into structured
evidence tables designed to enable consistent cross-study
comparison. Extraction focused on: (i) study identification
details (sport, competitive level, and sample characteris-
tics); (ii) input data domains (e.g., anthropometric, physi-
cal, technical, perceptual-cognitive, psychosocial, or
multi-domain); (iii) machine learning approach (e.g., su-
pervised classification, regression, ensemble learning,
clustering, or deep learning methods); (iv) type of outcome
predicted (e.g., selection vs. deselection, progression, posi-
tional classification, performance prediction, profiling, or
maturation); (v) validation strategy and performance met-
rics; (vi) interpretability analyses or insights reported by
authors; and (vii) main results and conclusions.

If studies tested multiple algorithms, results were
extracted for each model, though synthesis tables empha-
sized the best-performing or most interpretable approach.
No data transformations, imputations, or re-analyses were
performed; where performance metrics or validation de-
tails were missing, these were reported as “not reported.”

To facilitate synthesis, studies were grouped ac-
cording to their primary analytic aim rather than by sport
or algorithm. Each table followed a standardized column
structure (General Aim, Outcomes Predicted, Key Perfor-
mance Metrics, Interpretability/Key Insights, and Main
Results & Conclusions). To improve clarity, abbreviation
glossaries were provided for each table, and narrative over-
views were written to introduce and contextualize the in-
cluded studies.

Given the heterogeneity of sports, data modalities,
machine learning methods, and outcome definitions, statis-
tical pooling or meta-analysis was not feasible. Instead, a
structured narrative synthesis was undertaken. This narra-
tive integrated the tabular evidence with cross-cutting
themes, focusing on: (i) recurring methodological patterns;
(i1) relative strengths and limitations of different ML ap-
proaches; (iii) the role of interpretability in practical appli-
cation; and (iv) conceptual insights into how ML has been
used in talent identification and development.

Results

Study selection
A total of 228 records were identified through database
searches (PubMed, n = 28; Scopus, n = 128; Web of
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Science, n = 72). After removal of 83 duplicates, 145 rec-
ords were screened by title and abstract, of which 63 were
excluded. The remaining 82 reports were retrieved in full
text, with none unretrievable. Following detailed eligibility
assessment, 55 reports were excluded, primarily due to
population not meeting inclusion criteria (n = 53) or inter-
vention/outcomes not relevant (n = 2). Ultimately, 27 stud-
ies fulfilled all criteria and were included in the systematic
review (Figure 1).

Study characteristics

Across the 27 studies included in this review, most (n=13)
focused exclusively on football (soccer), reflecting its
global prominence in youth talent pathways (Zhao et al.,
2019; Jauhiainen et al., 2019; Abidin, 2021; Owen et al.,
2022; Kelly et al., 2022; Abidin and Erdem, 2025). Other
team sports examined included Australian Rules Football
(Woods et al., 2018b; a; Gogos et al., 2020; Jennings et al.,
2024), rugby (Woods et al., 2018a; Owen et al., 2022), bas-
ketball (Ge, 2024; Contreras-Garcia et al., 2024), cricket
(Brown et al., 2024), and volleyball (Formenti et al., 2022;
Sanjaykumar et al., 2024). Sample sizes varied considera-
bly, from very small academy samples as n=21 (Abidin,
2021) or n=22 (Formenti et al., 2022) to large federated da-
tasets as 13,876 (Altmann et al., 2024) or n=2222 (Abidin
and Erdem, 2025). While most studies reported male-only
samples, some included both sexes (de Almeida-Neto et
al., 2023; Ge, 2024) or were female-focused (Formenti et
al., 2022; Sanjaykumar et al., 2024). Reporting of biologi-
cal maturation was inconsistente, since some reported

explicitly the maturation (de Almeida-Neto et al., 2023;
Brown et al., 2024; Duncan et al., 2024), others not re-
ported in many academy datasets (Altmann et al., 2024;
Abidin and Erdem, 2025).

In terms of data domains, studies frequently combined an-
thropometric and physical performance measures (Craig
and Swinton, 2021; de Almeida-Neto et al., 2023; Ge,
2024), but increasingly incorporated technical, psycholog-
ical, perceptual-cognitive, or socio-cultural variables
(Owen et al., 2022; Formenti et al., 2022; Brown et al.,
2024). Supervised ML approaches predominated, with
common algorithms including Random Forest (Abidin,
2021; Owen et al., 2022), Support Vector Machines (Razali
etal.,2017; Abidin, 2021), penalized regression (Craig and
Swinton, 2021; Kelly et al., 2022), and neural networks (de
Almeida-Neto et al., 2023; Jennings et al., 2024). A smaller
subset used unsupervised or hybrid approaches for cluster-
ing or anomaly detection (Jauhiainen et al., 2019; Ge,
2024; Contreras-Garcia et al., 2024). Validation practices
varied: while some employed robust strategies such as
nested cross-validation (Altmann et al., 2024) or prospec-
tive external testing (Jennings et al., 2024), others relied
only on internal resampling or leave-one-out (Razali et al.,
2017; Formenti et al., 2022). Reporting of interpretability
methods was uneven since some studies (Retzepis et al.,
2024; Altmann et al., 2024) applied SHAP values, while
others (Woods et al., 2018b; Abidin, 2021) relied on sim-
pler feature rankings, and many did not address interpreta-
bility at all (Theagarajan and Bhanu, 2021; Sanjaykumar et
al., 2024).

Identification of studies via databases and registers J

Records identified from (n =
228):
Pubmed (n = 28)
Scopus (n = 128)
Web of Science (n=72)

Identification

Records removed before
screening:

Records screened
(n =145)

Y

Reports sought for retrieval
(n=82)

Screening

v

Reports assessed for eligibility
(n=82)

v

Duplicate records removed

(n=283)

Records excluded**
(n=63)

Reports not retrieved
(n=0)

v

Studies included in review
(n=27)

[Indudad][

v

Reports excluded (n = 55):
Population (n = 53)
Intervention/outcomes (n = 2)

Figure 1. PRISMA flow diagram (Page et al., 2021a).
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Table 1. Characteristics of the included studies.

ML Approach (class, algorithms, Validation Strategy

Study

model development)

(Abidin and
Erdem,
2025)

Deep learning (Shallow Deep Learning for
Stage 1; novel Split-Combine-Merge Deep
Learning [SCM-DL] for Stage 2); compared
with Random Forest, Decision Tree, Extra
Trees, SVC; nine feature selection methods
(RFE variants, SelectKBest, Lasso, Boruta)

Train/test splits (70/30
and 80/20), k-fold
cross-validation (3, 5, 7
folds); comparisons with
multiple classifiers

(Abidin,
2021)

Supervised learning; seven algorithms tested
in WEKA: ANN (MLP), SVM (SMO), Lo-
gistic Model Tree (LMT), Logistic regres-
sion, Naive Bayes, Random Forest, CART.
Dataset combined real + synthetic instances;
preprocessing included normalization and
derived position scores (D/M/F)

10-fold
cross-validation

Train/test split (70/30)

(de Almeida-
Neto et al.,
2023)

Supervised deep learning; multilayer
perceptron (MLP) artificial neural networks
with backpropagation; z-scores used to nor-

malize by sport/age; tested morphological,
neuromuscular, and combined models

with cross-validation (10
repeated runs; all
participants rotated
through training/testing);
~10,000 training iterations
Nested cross-validation

(Altmann et
al., 2024)

Supervised ML; Gradient Boosted Decision
Trees (LightGBM); models built
separately per playing position;
hyperparameter tuning with Bayesian
optimization; features reduced with
domain knowledge + automated selection

(inner loop for hyperpa-
rameter optimization, outer
loop for model evaluation);

train/test splits by season;
temporal separation to
avoid leakage
Cross-validation not

(Brown et
al., 2024)

Supervised ML: Bayesian binomial
regression (rSTAN); dimensionality
reduction via correlation
clustering —

21 derived features;
weak normal prior

reported; model
convergence checks
(posterior intervals,
n_eff, BFMI) used for
validation; sensitivity to
ethnicity effects tested
with interaction models

(Contreras-
Garcia et al.,
2024)

Spart Competitive Sample (n, sex, age range, Data Domains & Sources
Context maturation)
Multiple . . .
(Football, Sports high =222 (620Fe- D§V1ce-based physu':al tests.(cogrdmatl'on
via Spark, 30m sprint, vertical jump via
Basketball, school entrance males/1602Males), .
. . JumpR, rhythm test) + coach evaluations
Volleyball, (youth selection, 14-16 y, maturation not L . . -
s (17 criteria: physical, reaction, specialism,
Athletics; plus ages 14-16) reported sychological)
“Others”) psy g
n=21 field players (goalkeepers Training performance data via Hit/it
Altiordu . S L
excluded), all male, age =~ 13y, Assistant (reaction times, coordination,
Football Football : L .
maturation not reported; syn- speed, agility, etc.) + Coach evaluations
(soccer) Academy, . . o e o
thetic augmentation expanded across 18 qualitative/quantitative criteria
U13 youth . .
to 231 instances (converted to numeric)
National-level n=75 males, 12-16 }; (mean Morphological (anthropometry, DXA: body
youth athletes 13.3 £ 1.65), ~13% SI . e .
o o . mass, height, leg length, sitting height, body
Football (club teams, ~V-  practitioners, 87% athletes; o
.. . . . composition, BMC/BMD) + Neuromuscular
(soccer) level competition) somatic maturation estimated . . ..
. (handgrip, medicine ball throw, vertical jump,
and sports (PHV categories: pre-, countermovement jump via force plate)
initiation program circa-, post-PHV) Jjump P
= 0,
German Sl ST .layers (9.6 AR Longitudinal match-derived data:
. 11-19 y; maturation not o
Football Bundesliga L ~32 million events across 10 years;
explicitly reported but age .. . . . .
(soccer) youth academy . position-specific technical/tactical features;
(U12-U19) categories A(Ulinl 2 aggregated spatiotemporal event-based data
considered
n=82 male players, 14-17y Multidimensional: (a) physiological & anthropo-
(mean 15.3 £ 1.1); selected  metrical (Yo-Yo test, sprint tests, jumps, planks,
County Age n=33, non-selected n=49;  body size, weight, PHV), (b) perceptual—cognitive
Cricket Group (CAG) ethnicity: White British n=34, (video occlusion batting test), (c) psychological
programme, British South Asian n=44, (PCDEQ + multiple psychosocial questionnaires),
final trial stage Other n=4; maturation (d) participation history (practice/game history,
estimated (age at PHV, multi-sport), (e) socio-cultural (ethnicity,
maturity offset) schooling, siblings, birth quarter, postcode)
Spanish U14 _
Minicopa (youth) n—217.U1_4 L play@rs, Match-derived shooting charts
. 13-14 y; n=391 professional .
Basketball vs. Liga Endesa lavers: maturation (field goal attempts by location,
(professionals, Players; 2020-21 & 2021-22 seasons)
not reported

Unsupervised ML (k-means and KNN

clustering to classify shooting zones);

outlier detection (IQR-based model)
to identify “specialist shooters”

5-fold cross-validation for
cluster classification;
train/test split (20/80) for
KNN consistency

comparator group)



Tang et al.

65

Table 1. Continue...

ML Approach (class, algorithms,

Competitive Sample (n, sex, age . s
Study Sport Context range, maturation) Data Domains & Sources model development) Validation Strategy
Physiological: daily ECG-derived HRV SuEEmIEE WL NI ET Foen
_ > . algorithms in WEKA: Gaussian
n=44 males, mean age measures (time-, frequency-, and non-linear Processes. Linear Regression 10-fold cross-validation:
(Cornforth et Australian Elite professional 20y, ~85.7 kg; domain); Contextual: field size dimensions, ’ . er > : 0SS~V ’
. . LeastMedSq, Multilayer Perceptron, train/holdout
al., 2015) Rules Football players (AFL) maturation not match-day temperatures; Performance . .
. PLS Classifier, RBF Network, splits tested
outcomes: GPS-derived match load, . . .
s s SMOreg; feature selecthn via PC_A Vs.
’ wrapper subset + Genetic Algorithm
. . n=512 male players, aged Do
. Elite Scottish 10-17 at entry; 100 Anthropometric (height, weight, BMI) and Supervised ML: LASSO logistic 10-fold cross-vahdat'lon to
(Craig and soccer academy . . . . . tune LASSO penalty; boot-
. Football awarded pro contracts; physical performance (5, 10, 20m sprint regression (with mixed-effects )
Swinton, (U10-U17), - . Y . ) o ] . strap (10,000 samples);
(soccer) maturation not directly times; countermovement jump; Yo-Yo IR1) models for associations); multiple . X
2021) 10-year ) . oo . ) . . train/test split (2/3—1/3)
reported; strong relative  collected longitudinally (1-14 sessions/player) imputation for missing data L .
follow-up for predictive evaluation
age effect observed
Anthropometry; maturity offset (APHV);
n=162 boys, 7-14 y fur.ldamenta.l govemept skills via TGMD-3 with Supervised ML: linear, ridge, Train/validation/test splllt
Grassroots : video scoring; perceived physical competence . 80/10/10 per age band;
. (mean 10.5 +2.1); ) h . lasso, random forest, boosted trees; NS
(Duncan et Football club football in bi . : (PPASC); physical fitness (15 m sprint speed— . L 5-fold cross-validation;
iological maturation L . . . ) . recursive feature elimination; L1/L.2 . .
al., 2024) (soccer) England (County . timing gates; standing long jump); coach ratings S . . ; age-band stratification to
via APHV (Moore ; . . s regularisation; collinearity control; .
FA structure) (technical, social, physical, effort, overall); birth- Pvthon implementation avoid leakage/under-
quartile; technical skill test: UGent dribbling Y p representation
(procedural details reported)
Youth Italian =26 female players V(')ll.eyball—spemﬁc skill battery (S(?ttlng, passing, Superv1se4 ML: ngear Dlscrlmlnant
(Formenti et championshi (13 regional, 13 provin- spiking, serving; accuracy + technique); Physical Analysis, Logistic Regression, Stratified 5-fold cross-vali-
Volleyball P P, g » 0P ) performance (modified T-test COD, CMJ); Cog- SVM, Decision Tree; features = .
al., 2022) regional vs. cial), 13-15y; i, . . . . dation
> . nitive (Flanker task — executive control; Visual volleyball skills + physical +
provincial levels ~ maturation not reported ..
Search task — perceptual speed) cognitive measures
Unsupervised feature learnin; e il
n=40 (20 boys, Physical fitness tests (lung capacity, standing long P ; £ (4000/1000 records);
Secondary . . . (CNN + Autoencoder); Gaussian . .
(Ge, 2024) Basketball school trainin 20 girls), adolescents  jump, grip strength, 1000 m run boys / 800 m run Wit W Earile) QB okl ablation comparisons vs.
? & (~13-15 y); maturation girls); ~5000 test data entries used for model X (EVL alg ) CNN, CNN-AE, CNN-AE-
teams . S for parameter estimation); model . . .
training/validation SG; consistency tested with
termed CNN-AE-MG
Bland-Altman plots
AFL U18 _ .
National/State/other " 158 combine ) . . . . . . )
. combines: relates attendees (1999-2016); Cornblnf: anthropometr.lcs & physical tests (e.g., L1n.ear models for ratlngs/ Model fit assessed. w1t.h BIC;
(Gogos et al., Australian combine t,o senior summary models on 20 m sprint, Yo-Yo IR, jumps), plus draft order & rankings; boosted regression no external validation;
2020) Rules Football n=536 with >1 AFL position; career outcomes from AFLTables & trees for matches played retrospective explanatory

career outcomes
(retired/delisted

cohort)

mean age ~18.5y

Champion Data (gradient-boosted ML)

analysis
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Table 1. Continue...

Study Sport Competitive Sample (n, sex, age range, Data Domains & Sources ML Approach (class, algorithms, Validation Strategy
Context maturation) model development)
Nat}onal TID N=951 14-year-old boys; Physical tests (techmca}, speed, agility) One-class SVM (RBF) framed Performance evaluated with
.. database; focus on 14-y T I + self-assessment (perceived competence, . . AUC-ROC on held labels
(Jauhiainen Football L minority “academy . . N as anomaly detection to flag potential . A
Finnish juniors and o tactical skills, motivation) collected at o . after unsupervised training;
etal., 2019) (soccer) w . class n=14; tests/events . . . elite; PCA for decorrelation;
academy player biannual events; several data representations . . mean AUC ~0.763 across
. 2011-2017 . k-NN imputation
labelling (phys, quest, combined) hyperparameters
]i;llt;']tur;l?hrwiFF n=708 males; train Physical testing, in-game movement (GPS) Logistic regression vs neural Prospective external hold-
(Jennings et Australian pathiway; 2017-2020 (n=465), Y g, -8 . L networks to classify drafted vs not  out (2017-20—2021) with
prospective . and technical involvements; league-wide . . o o
al., 2024) Rules Football .. prospective test 2021 . drafted; operating at multiple sensitivity/specificity/
prediction of 2021 _ multi-season dataset .
. (n=243) cut-off thresholds accuracy comparisons
National Draft
Ty e Study 1: n=98, Multidomain 53 features across 8 methods ~ Penalized regression (cross-validated Sy
academy; U9-U16 de- . . . . . e Cross-validation (CV)
(Kelly et al., Football velonment and U9-Ule6; over 2 seasons (technical/tactical, physical, LASSO via glmnet) predicting (a) noted for LASSO:
2022) (soccer) U18pselec tion/ Study 2: n=18, psychological, social; e.g., PCDEQ, review ratings; (b) achieving internal onl i
. U18 (male) maturation %PAH, match hours) a pro contract y
deselection (contract)
Youth elite soccer Sample details not fully Deep latent-variable factor model: Robustness discussed: no
talent-promotion specified in abstract text; Multidomain performance battery used for VAE estimator with importance- classic predictive CV—,focus
(Kilian et al., Football program (DFB) —  applied to a set of multidi-  latent factor structure; evaluation contrasts weighted variational inference + 7. . prediciiv X
. . . . . . is dimensionality reduction
2023) (soccer) methodological mensional performance with PCA; study funded normalizing-flow priors; linear, . O
. o . . and identifiability; (not a
evaluation on real assessments within the by DFB talent program identifiable measurement model selection classifier)
program data program (youth cohort) (generalized EFA)
p Multi-league women’s  ~12,000 players tracked Aggregated web-sourced player metadata Rule-/criteria-driven alerts; “Al-
(Lopez-De- . ) . i . " . . e .
Armentia Football scouting context; data  across ~30 leagues; basic (age, position, height, market value, powered” extraction mentioned,  Expert usability evaluation;
2004) ? (soccer) scarcity/coverage roster & participation info contracts, injuries) and minutes played; but no supervised model for TID no predictive CV/hold-out
issues addressed by tool (adults and youth) alert generation pipeline classification is specified
Regional age-grade n=104 male; 21 physiological (demographics, Bayesian pattern-recognition Leave-one-out cross-
(Owen et al., Rugby academy selection Mage=15.47+0.80; anthropometrics, sprint/power, grip, etc.) pipeline to classify selected vs non- validation (LOOCV) to
2022) Union (U16 & U18) in North ~ U16 n=62; U18 n=42; + 47 psychosocial (burnout, motivation, trait selected; position-specific models ~ minimize overfitting; inter-
Wales; talent camps 66 selected/38 not measures, EI, coping) assessed at selection days (forwards/backs) nal validation only
(Razali et al., Football Bukit Jalil Sports n=100; 15-17 y; iogcﬂ_rit.;d phys1c§l, mentaill, aln g Superv1sle<d class.1 ﬁcatlon; Bla(lyesn?n Leave-one-out CV
2017) (soccer) School (academy) sex not reported R S (1-10); Football Player Neth)r S Dec1s19n s, LN (small sample size)
Information System (BJSS) WEKA implementation; GK excluded
. Preadolescent an. ) Anthropometry & motor tests (e.g., leg Superv1sed_clf1551ﬁcat101}; Random 10-fold stratified cross-
(Retzepis et ~ n=92; ~11 y; sex not . . . . Forest, Logistic Regression, Neural S
al., 2024) Team sports (=11 y) team-sport reported length, sitting height, weight, jumps) Network: forward feature selection validation (feature
? athletes p used to classify PHV i selection & tuning)

with stratified 10-fold CV

(Sandamal et
al., 2024)

Football (soc-
cer)

University-level players
in Karakalpakstan vs.
Khwarazm

n=60; 18-22 y; male

33 features (anthropometric, psychological,
physical); questionnaires & field tests

Supervised regression/classification;
Linear model, k-NN, Random Forest,
XGBoost; SHAP for feature ranking

Train/test split with
repeated evaluations;
details limited
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Table 1. Continue...

Study Sport Competitive Sample (n, Sex, age Data Domains & Sources ML Approach (class, algorithms, Validation Strategy
Context range, maturation) model development)
(Sanjayku- Volleyball College-level n not reported, Tedbvified ATl G e Supgrwsed regression; KNN, Multlple Model evaluiltlon via
mar et al., —— players (state & college-aged (>18 y); likely field-based assessments Linear Regression, Lasso, Ridge, MAE, MSE, R?; split/CV
2024) national level) female Y Elastic Net, Random Forest, XGBoost details not reported
. High-school and ) . .. .
(Theagarajan . Image dataset: 49,950 . ) Deep learning computer vision Runtime and accuracy
professional . . . Match video frames; automated player/ . . L L ]
and Bhanu, Football (soccer) . images; includes high- L . (object detection/tracking; metrics discussed; formal
competitions team/ball detection; event detection RN . .
2021) (video) school (youth) and pros event detection); supervised CV/test split not reported
Conceptual
(Ve Seolifify Sl 6 TEpTiiey Perceptual—cognitive attributes via
raman et al.,  Football (soccer) framework; case studies (e.g., Kevin P & . - None (scouting tool; no ML modeling) Not applicable
. ; YUVA-SQ questionnaire
2024) professional case De Bruyne); adults
studies
(Woods et Australian Rules Elite ]uI:llOI‘l n=244 playf':rs; §80 12 in-game technical skill indicators Supervised class1ﬁcat10n§ LD/?., . Internal clés51ﬁcatl?n
al., 2018b) Football (AFL) (U18 patlor}a observations; (match statistics) Ragdom Forest, PART (decision 1§t), accuracy; externa
’ championships) 17.6 £ 0.6 y; male variable importance & rule extraction  validation not reported
Elite youth (U20) . .
. . . . Internal classification
vs. senior (not U20: 372 obs; . Supervised classification tree to )
(ritcous sl Rugby League reportedL) not reportedL: 378 obs; Wept ity ings dfoations distinguish competitions; (el eesiy);
al., 2018a) by Leag port P : ’ from matches (not reportedL & U20) ing P ’ external validation
competition com- male interpretable rules
: not reported
parison
18 anthropometric, 5 physiological Supervised multiclass classification; Leave-one-out (DA);
(Zhao et al.,  Multi-sport (elite Elite sport school (6 n=97; male; U15-U16; p > physiofogical, Linear Discriminant Analysis; N
- 2 motor tests; standardized . . repeated 80/10/10 splits
2019) youth) sports; U15-U16) training load ~20.8 h/week Multilayer Perceptron; stepwise DA;
lab/field assessments for MLP

repeated MLP training/testing

The Figure 2 summarizes the distribution of methodological rigor across different
machine learning approaches used in youth-focused talent identification and development
research. The chart highlights that most studies employed supervised, non-deep learning
models with cross-validation as the primary evaluation method, while nested, temporal,
or external validation approaches were rare.

Risk of bias in studies

Across the 27 included studies, the PROBAST assessment (Table 2) showed that 19 stud-
ies (70.4%) were rated Low risk of bias for Participants, and 20 studies (74.1%) for Pre-
dictors. In contrast, 13 studies (48.1%) were rated Unclear for Outcomes, and 13 studies
(48.1%) were judged High risk in Analysis. Overall, 16 studies (59.3%) were assessed as
having High risk of bias. Regarding applicability, 11 studies (40.7%) raised Some concern
for Participants, 15 studies (55.6%) were rated Low concern for Predictors, and 11 studies
(40.7%) were judged as having High concern for Outcomes.

Synthesis of studies

Table 3 synthesizes studies that focus primarily on selection prediction within talent iden-
tification systems, where ML models were used to determine whether athletes would be
admitted, retained, or promoted at different stages of development. These works investi-
gated diverse sports and settings, ranging from youth soccer academies (Jauhiainen et al.,
2019; Craig and Swinton, 2021; Altmann et al., 2024), cricket county programes (Brown
et al., 2024), rugby union regional selection (Owen et al., 2022), and Australian football
drafts (Jennings et al., 2024). Studies also included models for admission and branch al-
location in sport schools (Abidin and Erdem, 2025), as well as selection support tools for
school athletes (Theagarajan and Bhanu, 2021).

Table 4 summarizes studies that applied ML to predict technical or physiological
performance outcomes in sport. A study (Cornforth et al., 2015) reealed that regression
models using pre-match heart rate variability (HRV) and environmental data could predict
in-game outputs in Australian football. More recent studies employed ML to model skill-
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specific outcomes in youth soccer, such as dribbling performance (Duncan et al., 2024)
and test-based fitness under environmental stressors (Sandamal et al., 2024). Similarly,
Sanjaykumar et al. (Sanjaykumar et al., 2024) showed that Random Forest and XGBoost

could accurately predict volleyball performance from anthropometric and body composi-
tion data.

[y
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Validation rigor

Table 2. Risk of bias assessment using PROBAST.

ML approach
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Figure 2. Validation rigor and machine learning approaches in youth talent identification studies.

Study PROBAST PROBAST PROBAST PROBAST Overall Applicability Applicability Applicability
Participants Predictors Outcomes Analysis ROB (Participants) (Predictors) (Outcomes)
(Abidin and Erdem, 2025) Low Unclear Low High High Some concern Some concern Low concern
(Abidin, 2021) Low Unclear Low High High Some concern Some concern Low concern
(de Almeida-Neto et al., 2023) Low Low High Unclear High Some concern Some concern High concern
(Altmann et al., 2024) Low Low Low Unclear Unclear Some concern Low-moderate concern Low concern
(Brown et al., 2024) Low Low Low High High Some concern Some concern Low concern
(Contreras-Garcia et al., 2024) Unclear Low Unclear Unclear High Low concern Low concern High concern
(Cornforth et al., 2015) Low Low Unclear Unclear High High concern Low concern High concern
(Craig and Swinton, 2021) Low Low Low Low Low Some concern Low concern Low concern
(Duncan et al., 2024) Low Low Unclear Unclear Unclear Some concern Low concern High concern
(Formenti et al., 2022) Low Low Low High High Some concern Low concern Moderate concern
(Ge, 2024) Unclear Unclear Unclear High High Unclear High concern High concern
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Table 2. Continue...

Study PROBAST PROBAST PROBAST PROBAST Overall Applicability Applicability Applicability

Participants Predictors Outcomes Analysis ROB (Participants) (Predictors) (Outcomes)
(Gogos et al., 2020) Low Low Unclear Unclear Unclear High concern Low concern High concern
(Jauhiainen et al., 2019) Low Low Unclear Unclear Low Low Low Low-moderate concern
(Jennings et al., 2024) Low Low Low Low/Unclear Low Low concern Low concern. Low concern
(Kelly et al., 2022) Low Low Unclear Unclear Low Low Low Low-moderate concern
(Kilian et al., 2023) Low Low High High High Low concern Low concern High concern
(Lopez-De-Armentia, 2024) Low Some concerns High High High Some concern High concern High concern
(Owen et al., 2022) Low Low Unclear Unclear Low Low Low Low-moderate concern
(Razali et al., 2017) Unclear Low High High High Unclear Low Low-moderate concern
(Retzepis et al., 2024) Low Low Low Low Low Low concern Low concern Low concern
(Sandamal et al., 2024) Unclear Low Unclear High High Some concern Low High
(Sanjaykumar et al., 2024) Unclear Unclear High High High Unclear Unclear High concern
(Theagarajan and Bhanu, 2021) Unclear Low High High High Some concern Some concern High
(Venkataraman et al., 2024) Unclear Unclear Unclear High High Unclear Unclear Unclear
(Woods et al., 2018b) Low Low Unclear Unclear Low Low Low Low—moderate concern
(Woods et al., 2018a) Low Low Unclear Unclear Low Low Unclear Low—moderate concern
(Zhao et al., 2019) Unclear Unclear Unclear High High Unclear Unclear Unclear

Table 3. Synthesis of individual studies focusing exclusively in selection prediction.

Study General Aim  QOutcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions
Stage 1: Admission (Pass/Fail) Feature selection revealed 6 key Authors conclude SCM-DL outperforms
(Abidin and . & : . ’ Stage 1: 98.9% accuracy (SDL). features spanning device tests & classical ML, can generalize to
Selection Stage 2: Branch allocation o o b . .
Erdem, .. Stage 2: 97.4% accuracy, MCC 96.6% coach ratings; novel SCM-DL hierarchical datasets, and helps coaches
Prediction (Football, Basketball, Volleyball, . . . . .
2025) . (SCM-DL, 6 features). architecture captured hierarchical prioritize features. External validity
Athletics, Other). . .
relations. remains untested.
Physical & physiological factors Authors conclude physical and skill-
(linear sprint, COD sprint, CMJ, related measures are most decisive in
_ Selection vs. deselection to the Best model XGBoost: ROC-AUC 0.69, aeroblc spe?ed reser_ve) and_soccer- selecnon/deself.:cnon; psychological fa_ctors
(Altmann et  Selection next age group (U12-U19) " specific skill most influential. moderate contributors. Suggests focusing
.. . F1-score 0.84. Models more sensitive . . .
al., 2024) Prediction in elite German youth soccer Psychological measures of medium  academy monitoring on speed, power,

to “selected” than “deselected.”
academy across 7 years.

importance; health, age, and
position-related variables incon-

sistent.

endurance, and soccer-specific skill.
Limitations: internal validation only, mod-
erate discriminative ability (AUC <0.70).

AUC = Area Under the Curve; AUC-PR = Area Under the Precision—Recall Curve; BMI = Body Mass Index; BSA = British South Asian; CAG = County Age Group; CMJ = Countermovement Jump; COD = Change of Direction;
DT = Decision Tree; F1 = Fl-score (harmonic mean of precision and recall); IR1 (YoYo IR1) = Yo-Yo Intermittent Recovery Test, Level 1; KNN = K-Nearest Neighbors; LD/LDA = Linear Discriminant Analysis; LOOCV =
Leave-One-Out Cross-Validation; LR = Logistic Regression; MCC = Matthews Correlation Coefficient; NN = Neural Network; Q1-Q4 = Birth quartiles (Relative Age Effect); RAE = Relative Age Effect; RF = Random Forest;
ROC-AUC = Receiver Operating Characteristic — Area Under the Curve; SCM-DL = Split-Combine—Merge Deep Learning; SDL = Shallow Deep Learning; SVM = Support Vector Machine.
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Table 3. Continue...

Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions
Differences between se- Not accuracy-based: model estimated
lected vs. non.-selected probablll.ty shifts. quﬁwe predlptors Mult1d1m§n§10nal input: 104 . .  Authors conclude both athletic and socio-cultural variables
youth male cricketers of selection: athleticism, wellbeing/co- characteristics across 5 domains (physiologi- o . . s L
. . S . g play significant roles in selection. Highlight disparities:
Selection (U14-17) and between hesion, birth in Q2—Q3, older brothers. cal, perceptual-cognitive, psychological, par- LS Lo :
(Brown et - . . . . Dy NN . . . despite high BSA participation in grassroots cricket, nder-
Prediction & White British (WB) vs. Negative predictors: higher psych. ticipation history, socio-cultural). Analysis . . . .
al., 2024) . . . L > . . . . . _ representation persists at selection level. Suggest systemic
Profiling British South Asian (BSA) scores, antisocial behaviour, younger  identified interaction between family struc . . . o
. . . . . bias may influence CAG selection. Findings exploratory;
selected players brothers/older sisters. Ethnic group dif- ture, socio-cultural factors, and selection sample small (N=82)
in County Age Group ferences observed in athleticism, well-  outcomes. p ’
(CAG) programmes. being, distress, antisocial behaviour.
Whether anthropometric Desbite sienificant mean Authors conclude that anthropometric and physical
(height, mass, BMI) and osp £ Relative age effect (RAE) very strong: performance profiling alone cannot predict professional
. . differences (successful players o . e
(Craig physical performance tests il i, i C) 50% of successful contracts born in Q1. contract success within already talented academy players.
and Selection (20m sprint, CMJ, YoYo e diz: tive aécul%ac was n:aar CMJ, stature, and sprint had small Recommend data be used to guide training, not selection.
Swinton, Prediction IR1) predict awarding of P . YW . associations but high overlap with non- Suggest holistic models integrating technical, tactical,
. . random: error proportion 0.43 (train), . i . . :
2021) professional contracts in an successful players. No reliable case-level psychological, and sociocultural variables, plus coach
. . 0.45 (test) vs. 0.50 for random - . . . -
elite Scottish soccer Jessin prediction possible. expertise. Stress need for addressing RAE bias (e.g.,
academy over 10 years. & & bio-banding, scout education).
Classification of female Authors conclude that higher-level players outperform
junior volleyball players Decision Tree: Precision 93%, DT identified passing and spiking technique lowelj-} evel DECIS actoss volleyball sk111§, COD, CMJ, and
. . T N _ . . cognitive functions. ML results emphasize the role of
(Formenti . as regional vs. provincial ~ Recall 73%, F1 = 0.83. Other plus cognitive task response times (Flanker ", . . . . I
Selection . ) cognitive functions + technical skills (passing, spiking) in
etal., - level based on volleyball-  models (LD, LR, SVM) performed congruent/incongruent, Visual search 10/15 o .. .
Prediction . . ; g o . Lo . discriminating competitive level. Practical recommenda-
2022) specific skills, physical lower (Precision 47-63%, items) as key discriminators. Physical tests Lo .. :

o . tion: include training of both volleyball-specific tech-
performance, and Recall 57-73%). (COD, CMJ) contributed less. . e/ 1 skills i h )
cognitive functions niques and executive/perceptual skills in youth develop-

) ment.
Best performance with “phys large”
Detection of potential elite dataset (N=951, 16 physical test Demonstrated utility of anomaly detection Authors conclude that one-class SVM can moderately
Wizt outh soccerpla ors variables): AUC-ROC = 0.763 for imbalanced TID problems (14 academy  identify future academy players but specificity remains
et al Selection E,aca dem corﬁraz i) g (x0.007), AUC-PR = 0.960, vs. 937 non-academy). Physical tests (jump, limited (many false positives). Results promising but not
2019") Prediction [ datZse i @ o Sensitivity = 0.80, Specificity = 0.61.  sprint, agility) more predictive than sufficient for stand-alone selection. Recommend larger da-

players (N=951, age 14).

Smaller sets (“phys+quest”,

performed worse (AUC-ROC

0.58-0.66).

questionnaire/self-assessment. Nonlinear
SVM outperformed linear baseline.

tasets, longitudinal validation, and integration of multidi-
mensional variables.

AUC = Area Under the Curve; AUC-PR = Area Under the Precision—Recall Curve; BMI = Body Mass Index; BSA = British South Asian; CAG = County Age Group; CMJ = Countermovement Jump; COD = Change of Direction;
DT = Decision Tree; F1 = Fl-score (harmonic mean of precision and recall); IR1 (YoYo IR1) = Yo-Yo Intermittent Recovery Test, Level 1; KNN = K-Nearest Neighbors; LD/LDA = Linear Discriminant Analysis; LOOCV =
Leave-One-Out Cross-Validation; LR = Logistic Regression; MCC = Matthews Correlation Coefficient; NN = Neural Network; Q1-Q4 = Birth quartiles (Relative Age Effect); RAE = Relative Age Effect; RF = Random Forest;
ROC-AUC = Receiver Operating Characteristic — Area Under the Curve; SCM-DL = Split-Combine—Merge Deep Learning; SDL = Shallow Deep Learning; SVM = Support Vector Machine.
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Table 3. Continue...

Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions
Drafted vs. not-drafted Iff)ﬁi}iIllzfg\?/s(;irfieC;I;Sslssifr?tlgNoig):cri- Neural petwqus handled unfactored, high- Aut.hqrs conclu_de that NN quels are more effectivg than
e in. the AFL ficity = 79 + 13%, sensi tiv.i ty =61+ d1m§n310nal inputs t_)etter the_m .LR, capturing logistic regression for predicting draft outcome, particu-
(s ‘ National Draft (2021) P % 6+ 8% vs. LR spec- nonlinear relationships. Logistic regression  larly yvhep 1dept1fymg drafted players (sensitivity).
of al Sele<':t1(.)n using physical, GPS ifici t’y — 73 + 15%. sensitivi t.y —929 4 be.neﬁtefi only when dz'ita were fa'ctqred Practical 1mp11cat19ns: .clubs may apply NN—base.d models
2024’) Prediction (i move’:ment) A 6’6 £ 11%. At draft- (dlrr{eps.1ongllty r.ed}lctlon). Key 1ns1ght:. to cqmplement subject.lve scouting and reduce bias.
and technical ’ cate t,hreshol d (15%) and cc;nvergence sensitivity (identifying Qrafted play§rs) is L1m1tat10n§: data. restricted to one state league,
involvement data firczsiiel (G576, NN Slssiitd) e paramount, andANN achieved superior psych0s9c1a1 variables absent, career success beyond draft
’ dirfiedl Smen i;1 S o e, balance of sensitivity and specificity. not considered.
Selection vs. non-selection K@y physiological predictors: greatqr hand Authors conclude physiglogical factors (str.ength, speed,
to regional Ul 6 and U8 Physiological models: 67.6% (all) grip strength, faster 10m & 40m sprints, power)'are more predictive of 'rugby .selectlon thap psy-
rugby squads based on 21 70.1% (forwards), 62 ) 50, ’ (backs) ’ higher power and momentum. Key chosocial ones, but psychosocial varlables (especially
(Owen et Selection physiological and 47 Psé/chosocial mo (iels" 62.3% (all)’ psychosocial prgdlctors: lower burnout, low_er. burnouF and .stress) also p.lay a 51gn1ﬁca_1nt role.
al,2022)  Prediction psychosocial factors 73.7% (forwards) 60’ 4% (backs)’ reduced f:xhaustlon, low§r reduced sense of P0s1tlop-spec1ﬁc differences exist (e.g., emotional
? Analyses run for all ’ Sp;eci ficity higher’ thaﬁ sensitivi ty. accomphshment, lower llfe §tress (forwards), regulation marke'rs.more fe.levany for forward's)‘
players, forwards, and in all cases and lower difficulty descrlbmg fee.llngs Recommend.hollstp, p0s1t10n-ta1'lored sele.ctlon '
backs ’ ’ ' (forwards). For backs, lower interjected frameworks including psychosocial screening alongside
) regulation and lower burnout were features.  physiological testing.
Classification of students’ Authors conclude ML, especially RF and SVM, can relia-
(e sports-specific talent cate- 4 F eature impoﬂance.analysis showed attrib-  bly c}a§sify schoql-level athletes into sui.table. sports,
oo Selection gory (basketball, Vollley- Random Forest highest: 96.2% accu-  utes like helgh_t, weight, speed_, and_endur- prov1d1_ng da.ta-_drl\_/en support f(_)r tale_nt 1(.1en_t1ﬁcat10n and
Bhanu S — ball, _footb_all, gthletlcs, ka- racy; SVM 95.5%; KNN 95.2%; Deci- ance strongly influenced clasmﬁcaﬂpn. Mod- allo.catlon. leltatlongz small, smgle-mstltutlon.dataset;
2021) > baddi, weightlifting) based sion Tree 92.6%; Naive Bayes 89.8%. els could allocate students to most likely attributes mostly physical, excluding psychological/tech-

on anthropometric and
physical fitness attributes.

successful sport pathway.

nical. Recommend broader variables and longitudinal vali-
dation.

AUC = Area Under the Curve; AUC-PR = Area Under the Precision—Recall Curve; BMI = Body Mass Index; BSA = British South Asian; CAG = County Age Group; CMJ = Countermovement Jump; COD = Change of Direction;
DT = Decision Tree; F1 = Fl-score (harmonic mean of precision and recall); IR1 (YoYo IR1) = Yo-Yo Intermittent Recovery Test, Level 1; KNN = K-Nearest Neighbors; LD/LDA = Linear Discriminant Analysis; LOOCV =
Leave-One-Out Cross-Validation; LR = Logistic Regression; MCC = Matthews Correlation Coefficient; NN = Neural Network; Q1-Q4 = Birth quartiles (Relative Age Effect); RAE = Relative Age Effect; RF = Random Forest;
ROC-AUC = Receiver Operating Characteristic — Area Under the Curve; SCM-DL = Split-Combine—Merge Deep Learning; SDL = Shallow Deep Learning; SVM = Support Vector Machine.



72

Machine learning in talent identification

Table 4. Synthesis of individual studies focusing exclusively in performance prediction.

Study General Aim

Outcomes Predicted

Key Performance Metrics

Interpretability / Key Insights

Main Results & Conclusions

(Cornforth  Performance
etal.,2015) Prediction

Prediction of in-game perfor-
mance in elite Australian
football players using pre-
match HRV measures (time,
frequency, nonlinear do-
mains) plus environmen-
tal/field data.

Best correlations with GA wrapper + regres-
sion algorithms: Walk r=0.76, Jog r=0.75,
Cruise r=0.73, Player Load r=0.72, Match
Distance r=0.73. PCA improved slightly
over all-variables approach, but GA wrapper
yielded the highest predictive performance
(mean r=0.60 vs. 0.49-0.53).

Highlighted the value of advanced regres-
sion (esp. SMOreg, Gaussian Processes)
combined with feature selection. Identified
HRV-derived features (esp. nonlinear
measures) plus environmental conditions
(temperature, field size) as significant con-
tributors to match performance.

Authors conclude sophisticated regression
models can predict match performance
>(.70 correlation from HRV and environ-
mental data. Potential to support player se-
lection decisions and training load adjust-
ments tailored to field dimensions and
match-day conditions. Early demonstration
of sport informatics potential in team
sport.

(Duncan et Performance

Dribbling skill (UGent drib-
bling test, skill differential

Initial accuracy: linear ~57%, ridge ~48%,
lasso ~34%, RF ~68%, boosted ~66%. When

Feature importance: FMS score most influ-
ential, followed by coach overall rating,
years of playing experience, and APHV.

ML showed technical skills can be pre-
dicted with high accuracy from multidi-
mensional inputs, especially FMS. Sup-
ports theory that broad motor skill compe-
tence underpins technical soccer ability.

1011 1 . 0,
EpZUZ) G with/without ball). SREEES L7 6750 UG K F 9.8'6A” LSS ELE Birth quartile and chronological age least Coaches should emphasize FMS training
trees 96.1%, lasso 94.1%, linear 91.9%. . . . .
important. before sport-specific drills. Suggests a shift
away from over-reliance on physical test-
ing alone.
Authors conclude explainable ML (esp.
SHAP global explanations: anthropometric XGBOOSt * SHAP/LIME) 0ffer§ accurate
_ s o . . and interpretable fitness prediction in
Prediction of soccer players . (sitting height, meso breadth), hematologi- L
. XGBoost consistently outperformed RF and young soccer players. Results highlight
performance in field-based . ) cal, and hormonal markers (E2, IGF-1, cor- ; .
tests: Dribbline Shuttle Test KNN across tests (highest R? and lowest er- tisol, testosterone) emerged as top predic- negative effects of environmental degrada-
(Sandamal  Performance . & ror). RF showed moderate accuracy, KNN ’ & PP tion (Aral Sea region) on hormonal bal-

etal.,2024) Prediction

(DSt), Goal Accuracy Test
(GAt), and Yo-Yo Intermit-
tent Recovery Test Level 1
(YYIRT1).

lowest. Performance varied between cohorts,
with Karakalpakstan athletes showing re-
duced predicted fitness values.

tors. LIME local explanations confirmed
hormonal differences: E2, IGF-1, cortisol
strongly impacted fitness in environmentally
exposed group, while testosterone was more
influential in controls.

ance and physical performance. Study
demonstrates value of explainable Al for
screening and tailoring training in vulnera-
ble populations. Limitations: relatively
small cohorts, region-specific findings, no
external validation.

e Performance
mar et al.

2024) Prediction

Prediction of on-court per-
formance based on demo-
graphic and physical attrib-
utes (age, height, weight, fat
%, muscle mass, bone mass,
BMI).

RF: R*=0.9418, accuracy=94.18%,
RMSE=2.67. XGBoost: R?=0.9276,
acc=92.76%, RMSE=2.98. Linear Regres-
sion weaker: R=0.7531, acc=75.31%,
RMSE=5.51.

Correlation analysis: Height (r=0.879), mus-
cle mass (=0.653), bone mass (r=0.622)
strongly positively related to performance.
BMI not significant (r=0.04). RF captured
nonlinearities best; XGBoost close.

Authors conclude ML—especially Ran-
dom Forest—provides accurate and objec-
tive prediction of volleyball performance
from physical attributes. Supports more
data-driven talent ID, moving beyond sub-
jective scouting. Future work: integrate
skill and psychological factors, extend to
diverse populations.

ACC = Accuracy; AUC = Area Under the Curve; APHV = Age at Peak Height Velocity; BMI = Body Mass Index; DSt = Dribbling Shuttle Test; FMS = Fundamental Movement Skills; GA = Genetic Algorithm; GAt = Goal
Accuracy Test; HRV = Heart Rate Variability; IGF-1 = Insulin-like Growth Factor 1; KNN = K-Nearest Neighbors; LASSO = Least Absolute Shrinkage and Selection Operator; LIME = Local Interpretable Model-agnostic
Explanations; PCA = Principal Component Analysis; R? = Coefficient of Determination; RF = Random Forest; RMSE = Root Mean Squared Error; SHAP = SHapley Additive exPlanations; SMOreg = Sequential Minimal
Optimization regression; XGBoost = Extreme Gradient Boosting; YYIRT1 = Yo-Yo Intermittent Recovery Test, Level 1.
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Table 5 compiles studies exploring the use of ML for team formation and playing
position classification, where algorithms aim to replicate or optimize decisions tradition-
ally made by coaches. A study (Abidin, 2021) tested multiple ML models for both position
assignment and lineup generation in youth soccer, demonstrating high concordance with
coach decisions. Other study (Razali et al., 2017) developed a prototype system to classify
football players into positional roles using physical, mental, and technical ratings, vali-
dated by expert coach evaluation. Finally a study (Woods et al., 2018b) examined posi-
tional classification in elite junior Australian football using technical skill indicators, high-
lighting the limitations of conventional statistics for discriminating playing roles.

Table 6 includes studies that address broader or emerging applications of ML in
talent identification and development, spanning orientation, specialization, profiling, mat-

Table 5. Synthesis of individual studies focusing in playing position/team formation prediction.

uration, and scouting support. Examples include orientation of youth into appropriate
sports using morphological and neuromuscular profiles (de Almeida-Neto et al., 2023),
detection of premature specialization in basketball (Contreras-Garcia et al., 2024), fitness
assessment with deep learning (Ge, 2024), and forecasting AFL career outcomes (Gogos
et al., 2020). Other studies investigated multidimensional predictors of progression (Kelly
et al., 2022), latent factor modeling of youth soccer assessments (Kilian et al., 2023), and
scouting frameworks in women’s and men’s football (Venkataraman et al., 2024; Lopez-
De-Armentia, 2024). A study (Retzepis et al., 2024) applied explainable ML to maturation
prediction, while other (Woods et al., 2018a) compared gameplay profiles of youth vs.
senior rugby league. Finally a study (Zhao et al., 2019) demonstrated cross-sport profiling
with anthropometric and physiological tests.

Study General Aim  Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions
Player position classification RF best at 93.9% accuracy, k=0.91; MLP Demonstrated importance of
(Defender, Midfielder, 92.6%, LMT 90.5%. Adding Hit/it training L P - .. Authors conclude ML models (esp. RF, MLP, LMT)
. . . combining coach evaluation + training . . .
Selection Forward) and lineup for- data improved accuracy across all device (Hit/it) data. Synthetic data can reliably support player selection and lineup
(Abidin, Prediction mation for U13 Altiordu algorithms vs. baseline (e.g., RF 81.8% — : s formation, potentially integrated into weekly
o X . generation addressed small sample. . o .
2021) & Team Football Academy players. 93.9%). For team formation, lineups of Lincun similarity analysis showed ML coaching tools. Hit/it data deemed essential to
Formation Compared ML lineups with ~ SMO & SimpleCART closest to coach p smarity Y . boost predictive accuracy. External generalizability
s . . . o . can approximate coach/team decisions . .
coach’s ideal lineup and 20  (Pearson r=0.975). Lineup similarity with . . remains untested beyond single academy.
match lineups. match lineups averaged 89.36%. without using match data.
Prediction of most suitable Framework CTLIEE] coach-rateq Authors conclude ML classifiers can assign players
laying position (10 outfield ciinlonies (10 pealls exstes plysie), to their optimal positions with very high accurac
Selection P ly . £P back mental, technical skills) with ML clas- duci p bi tp bias i hr(}il & e
(Razali et al., Support & IR SRl I L Bayesian Networks: 99% accuracy; sifiers. Developed a Football Talent reducing Subjective bias m coac ecmons.u
midfielders, wingers, - 000, . P ) . . . Prototype system was well-received (75-80%
2017) Team Decision Tree: 98%; KNN: 97%. Identification Site for practical . P
. forwards; GK excluded) . strongly agreed on usability, suitability).
Formation . deployment. Expert evaluation (20 Lo .
based on physical, mental, Limitations: small single-school dataset, manual
. . coaches/managers) confirmed ease of . . L .
and technical ratings. skill ratings subjective, no external validation.
use and relevance.
Authors conclude that existing commercial technical
Classification of elite junior Rule induction (PART) generated mdl.c.ators prov ide ¥1m1te(.1 d1s§r1m1natory power for
. . o L . . . position classification, with high homogeneity
Australian football players LDA: 56.8% accuracy (errors: midfielders 6 classification rules, mainly .
. . . . . across roles. PART offered relatively better accuracy
Team (U18) into 4 playing posi- 19.6% — rucks 75%). Random Forest: leveraging disposals, contested/ Lo LT
. . o . ; . but overfitting risk noted. Practical implication:
(Woods et Formation & tions (defender, forward, 51.6% accuracy (errors: midfielders uncontested possessions, kicks, and recruiters should use more bosition-specific
al., 2018b) Position midfield, ruck) based on 12 27.8% — rucks 100%). PART decision inside 50s. Showed defenders and technical indicators and despi  com Ié titions/trainin
Classification  technical skill indicators list: 70.1% accuracy (errors: midfielders forwards overlapped heavily; & P &

from national champion-
ships.

14.4% — rucks 100%).

environments that allow players to demonstrate
role-specific attributes. Reliance solely on standard
technical stats may obscure positional differences
and complicate objective recruitment.

midfielders most distinct; rucks poorly
classified due to small sample.

GK = Goalkeeper; k = Cohen’s Kappa (agreement statistic); LDA = Linear Discriminant Analysis; LMT = Logistic Model Tree; MLP = Multilayer Perceptron; PART = Partial Decision List (rule-based classifier); RF = Random
Forest; SMO = Sequential Minimal Optimization; SimpleCART = Classification and Regression Tree (simplified); U13/U18 = Under-13 / Under-18 age category.
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Table 6. Main results of the individual studies on multiple objectives.

Study General Aim  Qutcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions
Demonstrated how MLPs can Authors conclude MLPs are effective
. s integrate morphological + tools to guide orientation of SI youth
Predlﬁteld S}mlllimy between | fil Reliability of MLP models reported neuromuscular + biological into sports matching their
(de Almeida- Orientation & mforp ohqglga I;e}l{orr.luscglar PIOHICS 2t 87%. Similarity scores: SI — Soccer maturation factors. Highlighted BM  physical/neuromuscular profiles,
Neto et al., Selection ofyout ﬂllrll tp ort r}ltlatu;? (SI) vs. 88%, Swimming 79%, BJJ 77%, as a major confounder influencing reducing misallocation risk. Stress
2023) Support Z\‘;}?;%n ain ¢ tZ?lrllrilsSI\)/(oifeo bsal(lsoccer, Tennis 70% (combined analysis). neuromuscular strength and need to consider biological maturation
rowing BgJ’J) ’ yoall No significant similarity for Rowing.  morphology. Suggested that MLPs in TID. Limitations: cross-sectional,
> ’ can reduce selection errors by small sample (N=75), no longitudinal
combining multiple domains. follow-up, non-elite athletes.
Machine learning cluster analysis Authors conclude U14 basketball
KNN model classification of shots identified 8 shooting zones; players show premature specialization
T reached .99.6% accuracy cc_)mbined with outlier. detection, patterns not aligned with profe?ssional
(Comiems  Develepmen )  smdldeission oo i patisims (professwnals.as reference). yielded 7 role categories. Revea}ed deme_mds. Recommend fo_rmatlve -
Ceme el  Gssklimren o iy enly sresal me s Outlier analysis: 97.7% of U14 Ul4 lgcked .V.ersatlhty and 3-point training tp enhance shooting 'Ve.rsatlhty
2024) s Analysis versatility in U14 basketball playérs players vs. 64.7% of professionals shoo.tln'g .abll.lty, ofteq over- or to cult.lvate one-zone specw}hst
compared with professional players showed extreme FGA% patterns. specializing in 2-4 midrange zones.  roles deliberately. Findings raise
’ Versatility: U14 2.3% vs. Professionals characterized by either concerns that current youth competi-
Professionals 35.4%. versatile players or one-zone tions may prioritize short-term success
specialists. over long-term player development.
Authors conclude the CNN-AE-MG
Combination of CNN + Autoencoder model p rov1d1£: ¥ acc}il {)atel,( d}l;n?lmlc
CNN-AE-MG achieved mAP = enabled unsupervised feature learn- aisessn}enktl © .y(iu}: ltahs ctball ¢
Performance Quantitative classification of 89.12%, assessment accuracy = ing, reducing feature loss. Gaussian E;}Sﬁe %gsg: P:;l OS’:;E :Zlcf)éro
(Ge, 2024) Assessment &  youth basketball players’ physical 97.5%. Male subgroup prediction Mixture with EM algorithm exercise prescrif) tionri)ersonalization
’ Training fitness (excellent, good, pass, fail) 100% accurate (20/20 correct), improved classification reliability. training program adjustment, and ’
Support using CNN-AE-MG model. female subgroup 95% Identified endurance (1000m/800m), ’

(19/20 correct).

lung capacity, grip strength as weak
areas in youth players.

talent selection support. Limitations:
single-country, limited external
validation, general fitness focus rather
than sport-specific outcomes.

AE = Autoencoder; AFL = Australian Football League; APHV = Age at Peak Height Velocity; BJJ = Brazilian Jiu-Jitsu; BM = Body Mass; CNN = Convolutional Neural Network; CNN-AE-MG = Convolutional Neural
Network — Autoencoder — Mixture Gaussian model; CI = Conditional Inference; DA = Discriminant Analysis; EM = Expectation—-Maximization; F1 = F1-score (harmonic mean of precision and recall); FGA% = Field Goal
Attempt Percentage; Hb = Hemoglobin; HR = Heart Rate; IGF-1 = Insulin-like Growth Factor 1; KNN = K-Nearest Neighbors; Lasso = Least Absolute Shrinkage and Selection Operator regression; LR = Logistic Regression;
MLP = Multilayer Perceptron; nI-WAVE = Nonlinear Importance-Weighted Autoencoding Variational Inference with normalizing flow priors; NRL = National Rugby League; PCA = Principal Component Analysis; PCDEQ
= Psychological Characteristics of Developing Excellence Questionnaire; PHV = Peak Height Velocity; RF = Random Forest; ROC AUC = Receiver Operating Characteristic — Area Under the Curve; SHAP = SHapley
Additive exPlanations; SI = Sport Initiation; U20 = Under-20 age category; U12/U14/U18 = Under-12 / Under-14 / Under-18 age categories; YODA = Youth Online Diagnostic Assessment; YUVA-SQ = Youth Universal
Value Assessment — Scouting Questionnaire.
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Table 6. Continue...

Study General Aim

Outcomes Predicted

Key Performance Metrics

Interpretability / Key Insights

Main Results & Conclusions

Draft combine alone explained

Boosted trees showed player position
(>35% relative importance) and draft

Authors conclude AFL Draft Combine
tests are poor predictors of long-term
career outcomes. Draft position and

i . ; >259 i i .
Selegtl(?n Career outcomes of AFL <3-4% of variance in career outcomes. order (>25 /?,) far outweighed combine playing position provide small additional
Prediction & . . - results (<10%). Key forwards showed no .
(Gogos et al., draftees (matches played, Adding draft order & playing position . o explanatory power. Suggests physical test
Career . . . : ) clear relation between draft position and . . .
2020) mean AFL Player Rating, improved variance explained slightly . . batteries are insufficient for TID and
Outcome : o . . in-game performance; midfielders/rucks . .
. mean AFL Player Ranking). (up to 6%). Individual combine tests o ; . should be complemented by in-game skill,
Forecasting . o . showed positive relation. Evidence of . .
explained <2% variance. . . decision-making, and contextual factors.
loss aversion bias: early draftees played . e
. . Highlights systemic biases (early draft
more games irrespective of performance. .
order — more opportunities).
Study 1: 15/53 features had non-zero Authors conclude that youth development
coefficients; strongest = % predicted Lo . . is multifactorial and dynamic. Success not
. Lasso regression identified holistic, . . .
. . adult height (0.196), lob pass (0.160), . . solely determined by technical/tactical
(a) Player review ratings . . non-linear predictors across all FCM . . L
" oon. . dribble completion (0.124), total . e . ability; psychological resilience and self-
(U9-U16, n=98); (b) Selection domains. Key insight: psychological A o .
. match-play hours (0.145), older " 5 organization are critical. Early maturation,
to professional contract (U138, . . factors (esp. coping with pressure, . .
(Kelly etal., Talent - relative age. Study 2: strongest predic- Lo relative age, and cumulative match-play
n=18). Both based on ~53 . - organization) emerged as strongest . s . L
2022) Development . . tors of professional contract = PCDEQ . . also drive coaches’ evaluations. Findings
variables across four domains . . contributors to contract attainment, not . . .
. . . Factor 3 (coping with pressures), . . . P support bio-banding and greater invest-
(technical/tactical, physical, . . just technical/physical. Also highlights . . s
. . PCDEQ Factor 4 (ability to organise . . . ment in psychological development within
psychological, social). . . > relative age bias and importance of . Lo
quality practice), plus progression match-olay ooportunities academies. Limitations: small samples
ratings, slalom dribble, play opp ’ (esp. Study 2), retrospective data,
lower home SES. exploratory nature of ML.
Four interpretable latent factors: Authors conclude that dgep learning factor
LE . models (n-WAVE) provide better latent
. . - . . (1) Subjective coach evaluations, . .
. Identification of latent factors Not predictive classification; evaluated . . structure recovery than PCA, improving
Profiling / . L . . o (2) Anthropometric/age-related (incl. . - L .
- underlying multidimensional model fit and factor interpretability. . . . o interpretability of multidimensional TID
(Kilian et al., Latent . . . sprint), (3) Technical skills (dribbling, e
assessments (technical, tactical,  nl-WAVE outperformed PCA with . . b data. Highlight importance of large-scale
2023) Structure hysical, anthropometric clearer separation, fewer cross-load ball control, juggling), (4) Speed/agility. datasets in advancing ML-based profilin,
Analysis phy ’ P ’ P i nl-WAVE showed superior g p &

psychosocial).

ings.

interpretability and factor structure
stability.

Limitations: requires large data, anchors
affect loadings, only U12 German cohort
examined.

AE = Autoencoder; AFL = Australian Football League; APHV = Age at Peak Height Velocity; BJJ = Brazilian Jiu-Jitsu; BM = Body Mass; CNN = Convolutional Neural Network; CNN-AE-MG = Convolutional Neural
Network — Autoencoder — Mixture Gaussian model; CI = Conditional Inference; DA = Discriminant Analysis; EM = Expectation—Maximization; F1 = F1-score (harmonic mean of precision and recall); FGA% = Field Goal
Attempt Percentage; Hb = Hemoglobin; HR = Heart Rate; IGF-1 = Insulin-like Growth Factor 1; KNN = K-Nearest Neighbors; Lasso = Least Absolute Shrinkage and Selection Operator regression; LR = Logistic Regression;
MLP = Multilayer Perceptron; nI-WAVE = Nonlinear Importance-Weighted Autoencoding Variational Inference with normalizing flow priors; NRL = National Rugby League; PCA = Principal Component Analysis; PCDEQ
= Psychological Characteristics of Developing Excellence Questionnaire; PHV = Peak Height Velocity; RF = Random Forest; ROC AUC = Receiver Operating Characteristic — Area Under the Curve; SHAP = SHapley
Additive exPlanations; SI = Sport Initiation; U20 = Under-20 age category; U12/U14/U18 = Under-12 / Under-14 / Under-18 age categories; YODA = Youth Online Diagnostic Assessment; YUVA-SQ = Youth Universal
Value Assessment — Scouting Questionnaire.
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Table 6. Continue...

Study General Aim  Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions
Authors conclude WTDTool increases
. Tool integrates basic player data efficiency and coverage in scouting women’s
. . s No accuracy metrics (non-ML . o . ) IR
. Detection of potential women’s . . (demographics, position, minutes, football, particularly for clubs with limited
Scouting predictive model). Evaluation: . L
(Lopez-De- Support & football talents across ~30 Usefulness 4-5/5 ; Ease of use. contract expiry, market value, injuries) resources. Experts confirmed ease
Armentia, Taﬁ; t leagues using automated data 4-5/5 all expe rts’a reed alerts with automatic alert generation (e.g., of use and usefulness. Limitations: women’s
2024) . collection (Soccerdonna) + ’ xb greee U20 players with 1000 min, >5 goals, or  data coverage incomplete (contract and market
Detection were effective and tool improved ; .
alert system. efficienc consistent starts). Dashboards allow data available for only ~25% of players); no
Y filtering/searching ~12,000 players. predictive analytics yet. Future: add anomaly
detection and integrate multiple data sources.
Study concludes explainable ML can
accurately predict PHV timing in 11-year-old
. . . SHAP (explainable Al) revealed key athletes. Key growth and strength
Crlz(sliséfleiiag([)—[n\/oia;ggz; \3slth> LR achieved 96.67% accuracy, predictors: sitting height, weight, height, indicators (esp. sitting height, weight, grip
Cemeree  WEmmEion qu dian age. usin ’ 98% recall, 96.33% precision, body fat, left & right handgrip strength,  strength) discriminate maturity status.
al 205 4) Prediction anthro 01%1 e’tric t%o d 97.09% F1-score, ROC AUC father’s height. Sitting height and weight Findings help avoid misclassification of early
? com oii tion aI; ds tan th 99%. RF and NN slightly lower most influential (higher values — PHV ~ maturers as “talents” and support better talent
meagures i g (94-96%). > median). Body fat higher predicted ID, injury prevention, and training load
’ PHV < median. management. Recommends longitudinal
validation to confirm predictive power and
extend to other sports and female athletes.
Authors conclude YUVA-SQ offers a
. . holistic, standardized scouting framework
S . Not accuracy-based: case YODA psychometric tool provided . ", . .
Player suitability for selection . 7 . , . blending cognitive/behavioral assessment with
. . . demonstration. YODA generated  granular insights into players’ cognitive . . .
Scouting and development, integrating . . o technical/physical evaluation. Demonstrated
(Venkata- . trait/personality plots for profile (e.g., coachability, team T . . .
Support & psychometric (YODA) and oo . . ) . utility in restructuring a university football
raman et al., - L individual players, producing orientation, game knowledge, analytical .
Cognitive coach-based evaluations into a . L . . . team. Proposed extension to
2024) . . . actionable insights for coaches. style). Combined with coach technical .. T
Profiling standardized scouting grassroots talent scouting in India, aligning

framework (YUVA-SQ).

Validated by expert use and player

development outcomes.

ratings and trial performance for contin-
uous monitoring.

with AIFF “Vision 2047.” Limitations:
descriptive case study only, no predictive
performance metrics, no large-scale validation.

AE = Autoencoder; AFL = Australian Football League; APHV = Age at Peak Height Velocity; BJJ = Brazilian Jiu-Jitsu; BM = Body Mass; CNN = Convolutional Neural Network; CNN-AE-MG = Convolutional Neural
Network — Autoencoder — Mixture Gaussian model; CI = Conditional Inference; DA = Discriminant Analysis; EM = Expectation—Maximization; F1 = F1-score (harmonic mean of precision and recall); FGA% = Field Goal
Attempt Percentage; Hb = Hemoglobin; HR = Heart Rate; IGF-1 = Insulin-like Growth Factor 1; KNN = K-Nearest Neighbors; Lasso = Least Absolute Shrinkage and Selection Operator regression; LR = Logistic Regression;
MLP = Multilayer Perceptron; nI-WAVE = Nonlinear Importance-Weighted Autoencoding Variational Inference with normalizing flow priors; NRL = National Rugby League; PCA = Principal Component Analysis; PCDEQ
= Psychological Characteristics of Developing Excellence Questionnaire; PHV = Peak Height Velocity; RF = Random Forest; ROC AUC = Receiver Operating Characteristic — Area Under the Curve; SHAP = SHapley
Additive exPlanations; SI = Sport Initiation; U20 = Under-20 age category; U12/U14/U18 = Under-12 / Under-14 / Under-18 age categories; YODA = Youth Online Diagnostic Assessment; YUVA-SQ = Youth Universal
Value Assessment — Scouting Questionnaire.
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Table 6. Continue...

Study General Aim  Outcomes Predicted Key Performance Metrics  Interpretability / Key Insights Main Results & Conclusions
Authors conclude that NRL and U20 competitions
Classification of competition o ‘ . ’ show. distinct gameplay profiles. U20 players
. . . . Key discriminators: ‘all runs’, ‘tackles’, entering NRL may lack exposure to required
Talent Devel-  level (elite youth U20 vs. senior  CI classification tree . el s ey . . ..
. . o tackle breaks’, ‘missed tackles’, ‘kicks’.  tackling capacity and physicality. Coaches should
(Woods et opment & NRL) using 12 team correctly classified 79% of - . o .
.. S NRL games = more runs and tackles, focus on tackling ability and physical development
al., 2018a) Competition performance indicators U20 and 93% of NRL . . . IR
. . fewer missed tackles. U20 = higher tackle  in U20s. Suggests “bridging” via State League
Comparison (runs, tackles, missed tackles, games. o . > N o
. breaks, more errors. participation to aid transition. Practical implication:
kicks, etc.). L . . .
training interventions should aim to align youth
gameplay with senior competition demands.
DA: 71.3% correct gl?l/gclllltsC;ﬁ?&?;;?ilggtﬂi?iza%% Authors conclude that generic test batteries of
. . L classification (original: o ’ ’ anthropometric, physiological, and motor measures
Talent ;ﬁsestg:c(f;zlrze?é;ﬂl Sfellliig = 98.9%). Best: fencing 85%, gfe}:lliutehs treeI:iS[)iIclnlletIilrgﬁ 2)) ? P;Iloggg)a;il can differentiate youth athletes by sport with ~70%
Identification  judo, swimmin, tai)le tenngi; volLegterll 9200, i (vitalgca’ acity, hemo l(’)binymassgrestin TR GO (D Ll s, L
(Zhao et al., & Sport- JV olle; ball) intogt’heir respec ti;/e basketball 57.1%. MLP: HR) Volile bya’ll _ tal% stature. § tr:sn th € confirm discriminative value of body size, strength,
2019) g e<I:)i fic $po rt}{)ase don 25 tests (II)S 71.0% correct classification hi h. lun cZ acity. Tudo = tr,en thgch:ss " and aerobic capacity in talent ID. Basketball was
PIr)o TR agthropome 15, 5 Tl (original: 99.3%). Best: gil%ch HbgmaI; s S}\;imming _ lufg > hardest to classify due to small sample size.

volleyball 83.4%, table
tennis 83.3%. Worst:
basketball 20%.

2 motor).

Implication: test batteries are useful for broad sport
allocation, but need more sport-specific, larger-scale
validation.

capacity, tendon length. Fencing = smaller
chest/shoulder width. Table tennis = short
lower leg length + strong back.

AE = Autoencoder; AFL = Australian Football League; APHV = Age at Peak Height Velocity; BJJ = Brazilian Jiu-Jitsu; BM = Body Mass; CNN = Convolutional Neural Network; CNN-AE-MG = Convolutional Neural
Network — Autoencoder — Mixture Gaussian model; CI = Conditional Inference; DA = Discriminant Analysis; EM = Expectation—Maximization; F1 = F1-score (harmonic mean of precision and recall); FGA% = Field Goal
Attempt Percentage; Hb = Hemoglobin; HR = Heart Rate; IGF-1 = Insulin-like Growth Factor 1; KNN = K-Nearest Neighbors; Lasso = Least Absolute Shrinkage and Selection Operator regression; LR = Logistic Regression;
MLP = Multilayer Perceptron; nI-WAVE = Nonlinear Importance-Weighted Autoencoding Variational Inference with normalizing flow priors; NRL = National Rugby League; PCA = Principal Component Analysis; PCDEQ
= Psychological Characteristics of Developing Excellence Questionnaire; PHV = Peak Height Velocity; RF = Random Forest; ROC AUC = Receiver Operating Characteristic — Area Under the Curve; SHAP = SHapley Additive
exPlanations; SI = Sport Initiation; U20 = Under-20 age category; U12/U14/U18 = Under-12 / Under-14 / Under-18 age categories; YODA = Youth Online Diagnostic Assessment; YUVA-SQ = Youth Universal Value

Assessment — Scouting Questionnaire.

Discussion

This systematic review synthesized evidence on the application of ML methods in sport
TID and development. Across the included studies, ML was employed for diverse pur-
poses, ranging from predicting selection and performance outcomes to supporting team
formation, profiling, maturation assessment, and scouting. The findings highlight the chal-
lenges of applying ML in this domain: on one hand, advanced algorithms can capture
complex, multidimensional patterns that traditional statistical approaches may overlook;
on the other, the heterogeneity of data types, small sample sizes, and lack of external val-
idation continue to limit their translational value.

This capacity to model multidimensional structure aligns closely with the ecologi-
cal dynamics view of talent development, in which performance emerges from interaction-
dominant rather than variable-dominant processes. ML’s real strength lies not merely in
detecting correlations among isolated predictors but in uncovering higher-order patterns
that emerge from the interaction of biological, psychological, and environmental con-
straints (Reis et al., 2024). Accordingly, future research should prioritize feature sets and
modeling approaches that represent these interdependent relationships - such as contex-
tual, temporal, and relational variables - thereby aligning computational design with the
ecological nature of athlete development.
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Selection prediction

The synthesis of selection-focused studies demonstrates
that ML models can capture important physical, technical,
psychological, and socio-cultural factors associated with
advancement or deselection in talent pathways. Models
such as XGBoost, neural networks, and one-class SVMs
achieved moderate to high predictive validity in academy
soccer (Jauhiainen et al., 2019; Jennings et al., 2024; Alt-
mann et al., 2024), while decision trees and hybrid deep
learning architectures produced high accuracy in school-
based settings (Theagarajan and Bhanu, 2021; Abidin and
Erdem, 2025). Several studies emphasized that physical
and skill-related variables (e.g., sprinting ability, counter-
movement jump, ball control) remain consistently influen-
tial in selection decisions, while psychological characteris-
tics such as coping under pressure and emotional regulation
also emerged as critical predictors (Owen et al., 2022;
Kelly et al., 2022). Importantly, socio-cultural and relative
age effects were shown to influence outcomes, underscor-
ing that selection is not solely determined by athletic per-
formance (Craig and Swinton, 2021; Brown et al., 2024).

Nevertheless, these studies highlight important lim-
itations. Predictive accuracies often fell below thresholds
typically required for decision-making in practice (e.g.,
AUC < 0.70, (Altmann et al., 2024)), while external vali-
dation was rare, raising concerns about generalizability
across sports, contexts, and samples. This pattern under-
scores a crucial conceptual distinction between apparent
validity - performance measured within the development
sample - and transportable validity, which reflects how
well a model generalizes to independent, real-world con-
texts. For example, a model predicting academy selection
may achieve high internal accuracy (AUC = 0.85) through
resampling or cross-validation, yet when applied to a dif-
ferent club, season, or cohort, its performance may degrade
to AUC = 0.65. Such declines are not merely statistical ar-
tifacts but manifestations of the context-bound, dynamic
nature of athlete development, where the distribution of
constraints and opportunities shifts across settings. Recog-
nizing this difference reinforces that external validation is
not only a methodological requirement but a theoretical test
of whether the modeled relationships capture genuine de-
velopmental regularities rather than local sampling pat-
terns.

Many models also relied too much on physical test
data, which limits interpretability when predicting long-
term success within already selected elite groups (Craig
and Swinton, 2021). Small sample sizes and imbalance be-
tween selected and deselected athletes further restrict
model robustness (Jauhiainen et al., 2019). These findings
emphasize that ML should not replace expert judgment but
instead complement existing scouting frameworks.

Moreover, the dominance of soccer-based studies
likely shapes the implicit model priors in this field, since
features that are salient in invasion games (e.g., intermit-
tent high-speed running, rapid change of direction, spatial—
temporal awareness, and transition behaviors) are
overrepresented in training data and outcome labels.
As a result, ML models - and the feature-engineering
conventions they normalize - may capture sport-specific

regularities that do not readily transfer to sports with dif-
ferent task dynamics. This concentration can narrow eco-
logical validity, as the performer—environment couplings
and constraint sets underpinning soccer differ from those
governing performance in sports such as volleyball. Ex-
panding the evidence base beyond invasion games and en-
couraging cross-sport external validation would therefore
strengthen the domain generalizability of ML applications
in TID.

Performance prediction

Studies applying ML to performance prediction showed
promising results in linking physiological and technical
markers with skill-based and in-game outcomes. Early
work (Cornforth et al., 2015) demonstrated that heart rate
variability and environmental data could moderately pre-
dict match loads in Australian football. More recent studies
(Duncan et al., 2024; Sandamal et al., 2024) expanded to
youth skill assessment, where ML algorithms predicted
soccer dribbling ability and test-based fitness with high ac-
curacy when including multidimensional features such as
fundamental motor skills, anthropometry, and hormonal
profiles. Random Forest and XGBoost emerged as strong
performers, offering predictive power and capturing non-
linear relationships in volleyball performance from anthro-
pometric data (Sanjaykumar et al., 2024).

Despite these advances, performance prediction
studies also exhibit challenges. The use of laboratory or
field-test performance outcomes raises questions about
ecological validity for predicting actual match perfor-
mance. Furthermore, over-reliance on physiological data
may neglect tactical, cognitive, and psychosocial contribu-
tors to performance. While explainable ML techniques
provide interesting information into feature importance,
few studies validated whether these insights align with
real-world coaching expertise. To enhance translation, fu-
ture work should integrate multimodal data sources and
conduct prospective validation in competitive environ-
ments.

Team formation & position classification

The reviewed studies demonstrate that ML can approxi-
mate and in some cases outperform coach-derived deci-
sions regarding position classification and team formation.
For example, Random Forest and Multilayer Perceptrons
achieved >90% accuracy in predicting player positions and
generating lineups closely resembling coaches’ choices in
youth soccer (Abidin, 2021). Bayesian and tree-based
models also assigned players to suitable positions with
very high accuracy when using multidimensional skill rat-
ings (Razali et al., 2017). Even when accuracy was lower,
as in Australian football positional classification (Woods
et al., 2018b), ML revealed meaningful patterns, such as
the overlap between defenders and forwards, or the distinc-
tiveness of midfielders.

However, most models were trained on small or
academy-level datasets, limiting their generalizability
across contexts. For instance in Australian football study
(Woods et al., 2018b), poor classification of rucks high-
lighted that some roles remain underrepresented or difficult
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to capture with standard performance indicators. External
or longitudinal validation of team formation models is vir-
tually absent, and practical adoption will require integra-
tion with real-time data streams rather than retrospective or
synthetic datasets. Thus, while ML shows strong potential
in complementing coaching decisions, its utility remains
contingent on larger, multi-sample validation and the in-
clusion of richer, role-specific features.

Profiling, development, scouting & maturation
Studies beyond direct selection and performance predic-
tion illustrate the expanding scope of ML in talent identifi-
cation and development. Morphological and neuromuscu-
lar profiling models showed value for orienting youth into
appropriate sports (de Almeida-Neto et al., 2023), while
cluster and outlier analyses revealed concerning early spe-
cialization patterns in basketball compared with profes-
sional norms (Contreras-Garcia et al., 2024). Deep learning
models integrating autoencoders and Gaussian mixtures
provided accurate classification of youth fitness levels (Ge,
2024), while explainable ML approaches accurately pre-
dicted biological maturation status (Retzepis et al., 2024).
Studies on scouting systems in women’s and men’s foot-
ball (Venkataraman et al., 2024; Lopez-De-Armentia,
2024) highlight the growing use of ML and automated data
collection in expanding recruitment pipelines, particularly
where resources are scarce. These findings underline ML’s
versatility in supporting orientation, development monitor-
ing, and scouting beyond narrow predictive tasks.
Nevertheless, several limitations constrain the
translation of these broader applications. Many studies re-
main proof-of-concept, conducted with small or single-in-
stitution datasets (de Almeida-Neto et al., 2023; Retzepis
et al., 2024), or descriptive case studies without predictive
validation (Venkataraman et al., 2024). External generali-
zability is especially limited where region-specific envi-
ronmental effects or sample-specific datasets dominate
(Sandamal et al., 2024; Contreras-Garcia et al., 2024).

Limitations on ML reporting
Across the included studies, the analysis domain emerged
as the most frequent source of high risk of bias, primarily
due to small samples, reliance on internal validation, or use
of synthetic/augmented data without adequate safeguards
against optimism. For example, a study (Abidin, 2021) re-
lied on only 21 real players supplemented with synthetic
augmentation, producing very high accuracies but at the
expense of validity. Similarly, another study (Abidin and
Erdem, 2025) reported accuracies above 97% but did so
without external validation and with imbalanced data, leav-
ing open the possibility of overfitting. Even in larger, bet-
ter-resourced settings (Altmann et al., 2024), while partic-
ipants and predictors were appropriately defined, the lack
of calibration and external testing led to an overall “un-
clear” rating in the analysis domain. These aspects suggest
that although predictive modeling is advancing in youth
TID research, methodological rigor in handling imbalance,
avoiding leakage, and validating models externally is still
uncommon.

A second recurrent issue relates to applicability of
predictors and outcomes, especially where subjective or

indirect measures were used. For instance, studies using
coach-rated assessments as input variables (Abidin, 2021;
Abidin and Erdem, 2025) faced concerns that these subjec-
tive scores could embed bias or even overlap with the out-
come being predicted. Other study (de Almeida-Neto et al.,
2023) used cross-sport orientation outcomes rather than
within-sport selection, which limited the direct applicabil-
ity of their findings to talent identification in team sports.
In contrast, where predictors were standardized and out-
comes were objectively defined (Craig and Swinton,
2021), the risk of bias was lower, even if model perfor-
mance was weak. Overall, most included studies were
judged at least “some concern” for applicability, under-
scoring that future work should prioritize transparent, ob-
jective measures aligned closely with actual selection or
progression outcomes.

Limitations of this systematic review, future research
and practical applications

This review has limitations that should be acknowledged.
Despite a comprehensive search and systematic screening
process, it is possible that relevant studies were missed,
particularly those published in grey literature (e.g., tech-
nical reports, theses). The exclusion of grey literature was
a deliberate methodological choice to maintain peer-re-
viewed quality standards; however, it introduces the possi-
bility of publication bias, as studies reporting weaker or
non-significant results are less likely to appear in indexed
journals. Consequently, the synthesized evidence may
overrepresent positive findings and potentially overesti-
mate ML model performance. This limitation may be im-
portant, as it reflects a broader tendency within data-driven
research toward selective visibility of success - a phenom-
enon that underscores the need for greater transparency,
data sharing, and preregistration in ML-based sports sci-
ence. Moreover, the heterogeneity of sports, outcome
measures, and machine learning approaches precluded
meta-analysis and restricted the synthesis to a structured
narrative. The reliance on published results also meant that
incomplete reporting of performance metrics or validation
methods could not be clarified or supplemented, further
limiting interpretability. Finally, as many included studies
were exploratory, single-sample, or lacked external valida-
tion, the evidence base summarized here represents an
emerging rather than mature field.

Interpretability emerged as one of the least consist-
ently addressed dimensions across studies, yet it represents
a continuum of conceptual transparency rather than a bi-
nary property. At the most basic level, interpretability can
involve global feature importance or coefficient-based
rankings that indicate which variables most influence pre-
dictions. More advanced methods, such as SHAP (SHapley
Additive Explanations) or LIME (Local Interpretable
Model-Agnostic Explanations), allow for instance-level at-
tribution, showing how specific inputs contribute to indi-
vidual outcomes. At the highest tier, counterfactual reason-
ing provides actionable insight by simulating how changes
in certain features might alter selection probabilities or de-
velopmental trajectories. Viewing interpretability hierar-
chically underscores that transparency in ML is scalable—
from descriptive feature inspection to causal exploration—



80

Machine learning in talent identification

and that its depth should align with the practical stakes of
decision-making in TID.

Looking ahead, future research should prioritize
larger, longitudinal, and multi-sport datasets that allow for
robust model development and both statistical and ecolog-
ical external validation. In addition to conventional hold-
out or cross-cohort testing, ecological external validation
involves evaluating model performance across different
clubs, regions, and competition levels to ensure contextual
robustness and ecological realism. Such cross-setting vali-
dation helps determine whether predictive patterns reflect
genuine developmental principles or context-specific arti-
facts, bridging methodological rigor with the complex,
adaptive nature of sport environments. Standardized re-
porting of ML pipelines - including feature engineering,
calibration assessment, validation strategies, and interpret-
ability methods - would improve transparency and compa-
rability across studies. Greater integration of multidimen-
sional data is also needed to capture the complexity of tal-
ent development. Moreover, collaboration between sport
scientists, data scientists, and practitioners will be essential
to ensure that models are not only accurate but also inter-
pretable, ethically sound, and practically relevant. By em-
bracing open science practices and methodological rigor,
the field can move beyond optimism bias toward a more
cumulative, self-correcting body of evidence that meaning-
fully informs talent identification and development sys-
tems.

To enhance reproducibility and comparability, fu-
ture ML studies in talent identification should adopt, at
minimum, clearly describe their data partitioning strategy,
including whether splits were performed at the athlete or
trial level; outline steps for leakage control to prevent in-
formation overlap between training and testing sets; report
how class imbalance was handled within validation folds;
and include both discrimination and calibration metrics
(e.g., AUC, Brier score, calibration slope). In addition,
transparency around fairness auditing - such as assessing
model performance across relative-age quartiles, sex, or
maturation status - will improve interpretability and ethical
accountability. Consistent reporting of these elements
would substantially strengthen the methodological quality,
transparency, and applied trustworthiness of ML research
in youth talent identification.

To promote equitable predictions across subpopula-
tions, we propose a minimal fairness framework specifying
main covariates that should be recorded, modeled, and au-
dited in youth TID, as exemples, birth quarter/relative age,
biological maturation status (e.g., PHV indicators), and so-
cio-economic background (e.g., school type or deprivation
index), alongside sex and playing context (e.g., region/club
resource level). These variables should be (i) pre-specified
in protocols, (ii) considered as features or stratification fac-
tors where appropriate, and (iii) subjected to subgroup and
intersectional audits reporting discrimination, calibration,
and error-rate parity at a stated operating point. If dispari-
ties are detected, studies should apply bias-mitigation pro-
cedures (e.g., reweighting, stratified sampling, threshold
adjustment, post-hoc recalibration) and re-report subgroup
metrics.

From a practical standpoint, the findings of this re-
view suggest that ML may have potential to complement,
rather than replace, traditional talent identification and de-
velopment practices. Current evidence indicates that ML
models can highlight patterns across large, multidimen-
sional datasets and may assist coaches and scouts in refin-
ing their decisions or monitoring athlete development.
However, given the frequent limitations of small sample
sizes, context-specific data, and limited external validation,
these tools should be viewed as exploratory decision-sup-
port aids rather than definitive selection instruments. Prac-
titioners are advised to use ML outputs in conjunction with
expert judgment, holistic evaluation of athletes, and aware-
ness of potential biases (e.g., relative age, socio-cultural in-
fluences). This complementary role can be understood
along two interconnected pathways, namely an operational
pathway, in which ML assists practitioners with data-
driven screening, workload monitoring, and early flagging
of developmental trends to enhance decision efficiency,
and a discovery pathway, where ML identifies novel, inter-
action-based patterns among physical, technical, and psy-
chosocial constraints that can inform longitudinal experi-
mentation and theory development. These pathways illus-
trate that the value of ML lies not in replacing human ex-
pertise but in augmenting it - bridging empirical discovery
with applied decision-making in youth talent systems.
Careful integration in practice may enhance efficiency and
provide additional perspectives, but overreliance on unval-
idated models risks reinforcing existing inequalities or pro-
ducing misleading conclusions.

To operationalize these findings, practitioners could
adopt tiered decision protocols in which ML models are
first used for broad early screening - prioritizing high sen-
sitivity to avoid missing potential talent - followed by
structured expert evaluation emphasizing context, adapta-
bility, and psychosocial maturity. Such hybrid frameworks
can combine algorithmic efficiency with human interpre-
tive depth, ensuring that automated outputs inform but do
not dictate selection. In this way, ML functions as an evi-
dence-based triage tool that supports individualized moni-
toring, facilitates ongoing re-evaluation, and helps direct
coaching resources toward athletes with emerging poten-
tial rather than early advantage.

From a practitioner perspective, the implementation
of ML in TID can also be conceptualized as a sequential
decision pathway encompassing model development, vali-
dation, deployment, and monitoring. During development,
multidisciplinary teams should ensure data representative-
ness, apply rigorous leakage control, and use nested cross-
validation to optimize model tuning. Validation should
progress from internal to independent external testing to
evaluate transportability and calibration before any opera-
tional use. In deployment, ML outputs should serve as de-
cision-support tools within structured selection frame-
works - for instance, as high-sensitivity screening aids that
prompt subsequent expert evaluation. Finally, ongoing
monitoring is essential to detect model drift, reassess fair-
ness across athlete subgroups, and recalibrate performance
metrics as data and populations evolve. This cyclical pro-
cess ensures that ML models remain methodologically
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sound, contextually relevant, and ethically aligned with the
developmental principles of youth sport.

Conclusion

This systematic review found that research applying ML in
sport talent identification remains limited in scope but ex-
panding. The majority of available studies focused on se-
lection prediction tasks, particularly in soccer and other
team sports, where algorithms were used to forecast admis-
sion, progression, or draft success. A smaller but growing
body of work addressed performance prediction, leverag-
ing physiological, anthropometric, or cognitive markers to
estimate test results or in-game performance. Fewer studies
explored team formation and positional classification, and
an emerging set of contributions examined broader appli-
cations such as profiling, maturation, and scouting support.
Across domains, Random Forest, gradient boosting meth-
ods, and neural networks were the most frequently applied,
often achieving moderate to high internal accuracy. How-
ever, very few studies provided external validation, and
most were conducted on relatively small, single-sport or
academy-specific datasets, limiting generalizability.

The findings suggest that while ML offers clear po-
tential to enrich talent identification and development sys-
tems, its current role should be viewed as exploratory and
complementary rather than decisive. The predominance of
selection-focused studies highlights a narrow evidence
base, with underrepresentation of longitudinal designs, fe-
male athletes, and diverse sporting contexts. Moreover, in-
terpretability methods - although increasingly adopted - re-
main inconsistently applied, and socio-cultural or psycho-
logical factors are still less frequently integrated than phys-
ical and technical measures. Future progress will depend
on larger, multi-sample datasets, standardized reporting of
algorithms and metrics, and collaborative efforts to embed
interpretability and equity within predictive pipelines. Un-
til such methodological and theoretical maturity is
achieved, the use of ML in practice should remain cautious,
serving as a support to - not a substitute for - expert judg-
ment and holistic athlete evaluation. Ultimately, in youth
TID, transparency, transportability, and theoretical coher-
ence are the pillars upon which meaningful ML applica-
tions must be built.
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Key points

e Machine learning (ML) can identify complex talent patterns
across physical, technical, and psychological data, but it
should complement—not replace—expert judgment.

e Most studies show moderate accuracy but lack external val-
idation, making their generalizability and real-world relia-
bility limited.

e Current research is constrained by small samples and bias,
highlighting the need for larger, multi-sport, and longitudi-
nal datasets with standardized reporting and validation.
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