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Abstract 
Talent identification (TID) in team sports is complex, influenced 
by biological, technical, psychological, and socio-cultural factors. 
Machine learning (ML) offers tools to integrate high-dimensional 
data, yet its applications in youth TID remain underexplored. Ob-
jectives: To systematically review ML approaches applied to 
youth talent identification in team sports, with emphasis on data 
domains, algorithms, validation strategies, and interpretability. 
Eligible studies included peer-reviewed quantitative research ap-
plying ML to youth athletes (≤21 years) in team sports for TID 
outcomes. Searches were conducted in PubMed, Scopus, and 
Web of Science, supplemented by reference and citation screen-
ing. Extracted data items included input data domains (anthropo-
metric, physical, technical, perceptual–cognitive, psychological, 
socio-cultural, and multi-domain), ML approach, validation 
methods, performance metrics (e.g., accuracy, AUC, F1-score), 
and interpretability techniques. Risk-of-bias assessment was im-
plemented using PROBAST. From 228 records, 27 studies met 
inclusion criteria. Soccer was most studied (n = 13), with others 
covering rugby, basketball, cricket, volleyball, and Australian 
football. Sample sizes ranged from 21 to 13,876 athletes, predom-
inantly male. Supervised algorithms (Random Forest, gradient 
boosting, neural networks, penalized regression) were most com-
mon; some studies used unsupervised clustering. Validation prac-
tices varied, with few employing nested cross-validation or exter-
nal testing. Reported discrimination metrics ranged from modest 
to excellent (ROC-AUC ≈ 0.58 - 0.96, depending on model and 
context), yet calibration performance (e.g., Brier score, calibra-
tion slope) was rarely reported, and external validation was un-
common. Across studies, predictive accuracy was moderate to 
high internally but rarely externally confirmed. Risk of bias was 
high in 59 % of studies, mainly due to inadequate analysis and 
limited generalizability. Overall, ML shows potential to comple-
ment, not replace, traditional TID approaches - acting as a deci-
sion-support and hypothesis-generation tool that can assist prac-
titioners in early screening, individualized progression modeling, 
and evidence-based talent forecasting. To strengthen translational 
impact, future research should emphasize transparent reporting, 
calibration assessment, and external validation to ensure robust, 
applicable ML models for sport talent systems. 
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Introduction 
 
Talent identification and development (TID) can be con-
ceptualized as a complex, non-linear, and adaptive system 
arising from the continuous interaction of multiple con-
straints (e.g., biological, technical, psychological, environ-
mental, and sociocultural), consistent with ecological dy-
namics (Vaeyens et al., 2008; Seifert et al., 2017; 2022). 

This perspective treats athletes and teams as complex adap-
tive systems in which performance emerges from per-
former–environment couplings rather than from any single 
determinant, helping explain variability and divergent 
pathways to expertise (Seifert et al., 2017; 2022). These 
same principles inform the use of machine learning (ML), 
as algorithms trained on representative, context-rich data 
can better capture the functional - rather than merely de-
scriptive - aspects of performance. Incorporating contextu-
alized variables such as opponent positioning, temporal 
constraints, or perceptual–motor demands enables ML 
models to infer how athletes adapt to dynamic environ-
ments, thereby aligning data-driven modeling with the eco-
logical validity of real performance contexts (Reis et al., 
2024; Cordeiro et al., 2025). 

TID outcomes can be operationally as measurable 
indicators of athlete progression, including selection (the 
identification or nomination of athletes for higher-level 
squads, academies, or representative team) (Larkin and 
O’Connor, 2017), advancement (continued inclusion or 
promotion within developmental pathways across time); or 
retention (sustained participation or non-deselection within 
structured development systems) (Güllich, 2014). TID are 
central pillars of performance pathways in team sports, yet 
they remain challenging due to the multifactorial and long-
term nature of sporting excellence (Vaeyens et al., 2008). 
In soccer and other team sports games, early reviews al-
ready emphasized that no single anthropometric, physio-
logical, or psychological attribute uniquely determines fu-
ture elite status, underscoring the need for multidimen-
sional assessment (Williams and Reilly, 2000). Accord-
ingly, comprehensive, multidisciplinary test batteries have 
been advocated to distinguish performance levels in youth 
players, integrating technical, physical, and perceptual–
cognitive factors (Reilly et al., 2000). 

However, conventional selection practices can be 
biased by structural and developmental factors (Till and 
Baker, 2020). Across sports, annual age-grouping system-
atically produces relative age effects that distort participa-
tion and attainment, with robust meta-analytic evidence 
showing substantial over-representation of relatively older 
athletes (Cobley et al., 2009). These biases also affect 
women’s sport, where relative age effects are prevalent and 
can shape pathway opportunities (Smith et al., 2018). In 
parallel, differences in growth and biological maturation 
are particularly salient in adolescence, where earlier-devel-
oping youth may temporarily appear superior in test batter-
ies, complicating prognostic judgments in talent pathways 
(Malina et al., 2015). Longitudinal work further suggests 
that while some anthropometric and running measures 
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show short-term stability, predictability erodes as the fol-
low-up window lengthens, cautioning against early deter-
ministic selection (Deprez et al., 2015). 

From a systems perspective, team sports exhibit 
properties of complex adaptive systems in which perfor-
mance emerges from interacting constraints across per-
formers, tasks, and environments, challenging linear pre-
diction (Seifert et al., 2017). This lens encourages practi-
tioners to design representative learning environments and 
assess adaptable skill, rather than isolated traits alone 
(Woods et al., 2020). Concurrently, the proliferation of 
player monitoring - such as global positioning system 
(GPS) and inertial technologies - has generated high-vol-
ume, multi-source data that can complement traditional 
scouting in talent pathways (Ravé et al., 2020). For youth 
programs in particular, such data-rich approaches may help 
disentangle transient growth effects from underlying skill 
and potential, if analyzed with appropriate modeling strat-
egies. 

Machine learning (ML) methods are well suited to 
model high-dimensional, nonlinear relationships and to 
fuse heterogeneous data streams, and have transformed 
predictive analytics across biomedicine in analogous prob-
lems (Topol, 2019). Within sport, researchers have high-
lighted the growing role of artificial intelligence (AI) and 
ML for decision support across performance and recruit-
ment domains (Chmait and Westerbeek, 2021). Indeed, 
soccer-specific syntheses now document rapid expansion 
of ML applications, signaling both opportunity and meth-
odological variability that warrant careful appraisal (Rico-
González et al., 2023; Beato et al., 2025). 

Within this growing landscape, ML applications in 
TID can be conceptually grouped into four possible over-
lapping roles. First, predictive modeling seeks to forecast 
future selection, progression, or performance based on 
multidimensional athlete data, aligning with conventional 
supervised learning paradigms (Altmann et al., 2024). Sec-
ond, clustering and representation learning use unsuper-
vised methods to identify latent groupings or archetypes of 
players, informing talent grouping and developmental pro-
filing (Contreras-García et al., 2024; Haan et al., 2025). 
Third, longitudinal monitoring leverages sequential or tem-
poral models to track developmental trajectories and mat-
uration dynamics, offering insight into non-linear growth 
patterns (Chmait and Westerbeek, 2021). Finally, decision-
support systems integrate these analytic layers into practi-
cal tools that complement coach judgment by providing in-
terpretable, data-informed recommendations (Chmait and 
Westerbeek, 2021). 

ML applications in youth talent identification are 
beginning to emerge, directly targeting selection and ad-
vancement decisions within academies and development 
squads (Nassis et al., 2023). Recent work in elite youth soc-
cer used supervised algorithms (e.g., gradient-boosted 
trees) to predict selection versus de-selection across age 
groups, identifying contributions from speed, change of di-
rection, countermovement jump, aerobic speed reserve, 
and technical skill (Altmann et al., 2024). A growing line 
of inquiry also examines how socio-biological factors, par-
ticularly the relative age effect and maturation status, may 
influence data-driven decision-making (Finnegan et al., 

2024). ML offers a means to quantify, and potentially mit-
igate, these entrenched selection biases - depending on how 
data are sampled, labelled, and validated - thus serving as 
a test case for fairness and transparency in predictive mod-
elling (Reis et al., 2024). Multidisciplinary approaches 
have also combined psychosocial and physiological 
measures with ML to predict youth rugby union selections, 
illustrating the value of integrating non-physical determi-
nants (Owen et al., 2022). Beyond supervised prediction, 
unsupervised learning has been explored to derive role-ag-
nostic player groupings from match running data, offering 
alternative structures for evaluation and development plan-
ning (Haan et al., 2025). At the position-specific level, ML 
classifiers have been applied to discriminate performance 
tiers in professional goalkeepers, demonstrating how algo-
rithmic profiling can inform specialized talent evaluation 
(Jamil et al., 2021). 

Yet, translating these advances into dependable 
youth talent decisions requires vigilance about methodo-
logical pitfalls common to prediction research (de Jong et 
al., 2021). Small sample sizes and inadequate validation in-
flate estimated performance, highlighting the importance 
of robust procedures such as nested cross-validation and 
strict separation of training and testing (Vabalas et al., 
2019). Data leakage - through feature selection on the full 
dataset, reusing individuals across folds, or inadvertent 
temporal contamination - can markedly overstate model 
accuracy and undermine reproducibility (Kapoor and Na-
rayanan, 2023). Evaluation must also account for class im-
balance and choose metrics judiciously, given differing 
sensitivities of ROC and precision–recall analyses under 
skewed outcomes typical of selection tasks (Richardson et 
al., 2024). For clinical-style prediction problems, inde-
pendent external validation remains essential to estimate 
generalizability prior to deployment in new cohorts or 
clubs (Gallitto et al., 2025). Aligned with broader predic-
tion-model science, contemporary reporting guidance 
(TRIPOD+AI) and risk-of-bias tools (e.g., PROBAST) 
provide structured expectations for transparency, repro-
ducibility, and appraisal of ML-based models (Wolff et al., 
2019; Collins et al., 2024). 

Several narrative and systematic reviews have syn-
thesized traditional and methodological approaches to tal-
ent identification (TID) in team sports, but without a spe-
cific emphasis on ML techniques and their unique chal-
lenges (Barraclough et al., 2022). Other reviews focus on 
ML in soccer broadly or on injury risk prediction, rather 
than on youth talent identification across multiple team 
sports and data modalities (Nassis et al., 2023; Leckey et 
al., 2025). Likewise, sport-specific talento identification 
syntheses in football underscore multidimensional deter-
minants but do not evaluate the distinct promises and pit-
falls of ML for selection decisions across team sports (Sar-
mento et al., 2018). 

Therefore, the purpose of this systematic review is 
to map, critically appraise, and synthesize applications of 
ML to youth talent identification in team sports, with atten- 
tion to data sources, model classes, validation strategies, 
interpretability, and risk of bias, consistent with contempo-
rary prediction-model guidance. Conceptually, this review 
also examines whether multidomain ML models – integrat- 
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ing physical, technical, perceptual–cognitive, and psycho-
social indicators - capture developmental potential more 
effectively than single-domain approaches, thereby ad-
dressing how the multidimensional nature of athlete devel-
opment can be represented within predictive frameworks. 
Analytically, we also quantify the use of nested versus non-
nested cross-validation procedures to provide a transparent 
overview of model evaluation rigor and guide the repro-
ducibility of the synthesis process. Specifically, we aim to 
catalog the types of athlete data and ML methods used to 
predict selection and advancement in team sports, evaluate 
methodological quality, reporting, and validation practices, 
summarize model performance, calibration, and generali-
zability, and identify evidence gaps and practical implica-
tions for programs and practitioners seeking to integrate 
ML into selection and development processes. 
 
Methods 
 
The review was conducted and reported in accordance with 
PRISMA 2020 recommendations to ensure transparent and 
reproducible synthesis (Page et al., 2021b). Registration 
was conducted on OSF (osf.io/yn895; October 15, 2025). 
 
Eligibility criteria 
PICO criteria 
Studies were considered eligible if they addressed the use 
of ML methods for TID in team sports. Eligibility was de-
fined using a modified PICO framework as follows: 

Population (P): Youth athletes (≤21 years) engaged 
in organized team sports (e.g., soccer, basketball, rugby, 
hockey, handball, volleyball, American football, baseball, 
and other team sports). Studies were eligible regardless of 
competitive level (grassroots, academy, sub-elite, or elite 
youth), and no restrictions were imposed on sex. Studies 
focusing exclusively on adult/professional-only cohorts or 
on individual sports were excluded. We defined “youth” as 
athletes ≤21 years to align with established competitive ti-
ers and developmental transition points in team sports. In 
football and other codes, U21 is the terminal youth cate-
gory preceding senior squads; research shows that experi-
ence and performance at U21 best predict subsequent sen-
ior participation compared with earlier youth levels, situat-
ing age 21 as the practical boundary of the youth pathway 
(Herrebrøden and Bjørndal, 2022). More broadly, youth-
athlete development reviews describe late adolescence and 
emerging adulthood (late teens–early 20s) as the period 
when maturation, psychosocial development, and role tran-
sitions converge - precisely the window spanned by the 
U21 tier - supporting the conceptual placement of ≤21 as 
the end of the formative, pre-senior phase (Varghese et al., 
2022). In studies that included both youth (≤21 years) and 
adult athletes, inclusion was contingent on whether youth-
specific results could be clearly identified or disaggre-
gated. 

Intervention/Exposure (I): Application of ML algo-
rithms (supervised, unsupervised, reinforcement, or hybrid 
approaches) to support talent identification or selection 
processes (e.g., prediction of selection vs. deselection, pro-
gression to higher competitive levels, role-agnostic player 
clustering, or position-specific profiling in youth athletes). 

Studies limited to traditional statistical analyses without 
ML components were excluded. 

Comparators (C): Comparator groups were not 
mandatory. Where applicable, comparators could include 
traditional scouting, expert coach assessment, or alterna-
tive analytic approaches (e.g., regression, rule-based clas-
sification). 

Outcomes (O): Eligible studies had to report at least 
one youth TID-related outcome, such as predictive accu-
racy of selection, identification of key features contributing 
to progression, classification of athlete profiles, or algorith-
mic discrimination of performance tiers within youth co-
horts. Studies were excluded if ML was applied exclu-
sively to non-TID outcomes (e.g., injury prediction, work-
load monitoring, or tactical analysis), if ML was applied 
only in adult/professional samples, or if results were not 
disaggregated to allow extraction of youth TID-specific 
findings. 
 
Study design and setting 
All quantitative empirical studies employing ML algo-
rithms for TID were included, regardless of design (cross-
sectional, longitudinal, retrospective, or prospective). 
Proof-of-concept studies, validation studies, and applied 
analyses in real-world settings were all eligible. Qualitative 
studies, narrative commentaries, editorials, opinion pieces, 
and reviews were excluded, though their reference lists 
were screened for potential eligible primary studies. 
 
Report characteristics 
Only peer-reviewed journal articles were included to en-
sure methodological rigor. Grey literature, preprints, con-
ference abstracts, theses, and unpublished reports were ex-
cluded due to limitations in methodological detail and peer 
review. Only studies published in English were considered 
eligible. No restrictions were placed on the year of publi-
cation. 
 
Information sources 
The literature search was conducted across three major bib-
liographic databases to ensure coverage of relevant studies: 
PubMed, Scopus, and the Web of Science Core Collection. 
No restrictions were applied with respect to publication 
year, study design, or participant age at the search stage. 
The final searches of all databases were completed on Oc-
tober 15, 2025. 

To complement the electronic database searches, 
the reference lists of all studies meeting the eligibility cri-
teria were manually examined to identify additional arti-
cles not retrieved in the initial search. Reference lists of 
previous systematic and narrative reviews relevant to talent 
identification, sports analytics, or the application of ma-
chine learning in sport were also screened. Furthermore, 
backward and forward citation searches were conducted 
using the Web of Science Core Collection for all included 
studies to capture any additional eligible publications. 

No study registers, trial registries, organizational re-
positories, or grey literature sources were searched. Only 
peer-reviewed journal publications retrieved through the 
databases and reference list searches were included for 
screening. 
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Search strategy 
The search strategy was designed to capture all available 
studies addressing the use of ML for TID in team sports. 
The strategy combined controlled vocabulary terms and 
free-text words related to “machine learning,” “artificial in-
telligence,” and “talent identification” with sport-specific 
terms, following iterative piloting and refinement to bal-
ance sensitivity and specificity. The conceptual structure of 
the strategy was based on a modified PICO approach, fo-
cusing on the population of team sport athletes and the in-
tervention or exposure of machine learning applications for 
talent identification outcomes. The following search strat-
egy was employed: ("machine learning” OR "artificial in-
telligence” OR "deep learning" OR "supervised learning" 
OR "unsupervised learning" OR "neural network*" OR 
"support vector machine*" OR "random forest*" OR "gra-
dient boosting" OR "learning algorithms" OR "bayesian lo-
gistic regression" OR “random forest" OR "random for-
ests" OR "trees" OR "elastic net" OR "ridge" OR "lasso" 
OR "boosting" OR "predictive modeling") AND (talent* 
OR "talent identification" OR "talent detection" OR "talent 
development" OR "player selection" OR "athlete selection" 
OR "talent promotion") AND ("team sport*" OR "soccer" 
OR "football" OR "basketball" OR "rugby" OR "handball" 
OR "volleyball" OR "hockey" OR "baseball" OR "softball" 
OR "lacrosse" OR "water polo"). 
 
Selection process 
All records identified through database searching were im-
ported into an Excel sheet, and duplicates were removed 
prior to screening. Two reviewers independently assessed 
the eligibility of studies against the predefined inclusion 
and exclusion criteria in title/abstract screening and then in 
full-text screening. Disagreements between reviewers were 
resolved through discussion. The reasons for excluding 
studies at the full-text stage were documented and reported. 
 
Data collection process 
Two reviewers independently extracted data from each 
study. The extracted information was subsequently com-
pared, and any discrepancies were resolved through discus-
sion. No automation tools or machine learning–based sys-
tems were used for data collection. Only information ex-
plicitly reported in tables, text, or graphs was included. 
 
Data items 
The domain of interest was the performance of machine 
learning models applied to talent identification in youth 
team sports. Within this domain, data were extracted on 
predictive or classification performance metrics reported 
by each study. These included, where available, overall ac-
curacy, sensitivity (recall), specificity, precision, F1-score, 
area under the receiver operating characteristic curve 
(AUC-ROC), and area under the precision–recall curve 
(AUC-PR). When studies reported multiple metrics, all 
available values were collected to allow for a comprehen-
sive synthesis. 

Other domains included talent-related predictions 
and classifications such as selection versus deselection, 
progression to higher competition levels, clustering of 
players into performance profiles, and position- or role-

specific identification. Where studies reported longitudinal 
prediction outcomes, all time points were collected, and no 
restrictions were applied to the follow-up period. In cases 
where results were presented using different analysis strat-
egies (e.g., cross-validation folds, test set performance, ex-
ternal validation), all eligible outcomes were extracted, 
with priority given to independent test set or external vali-
dation results when synthesizing evidence. 

No changes were made during the review process to 
the inclusion or definition of outcome domains. All out-
come domains compatible with TID were considered 
equally relevant at the data extraction stage. However, in 
the interpretation of findings, external validation perfor-
mance and transparent reporting of prediction quality were 
considered most critical, as these outcomes are directly 
aligned with the review’s objectives of evaluating method-
ological robustness and generalizability. 

In addition to outcomes, other variables were ex-
tracted from each study to support subgroup analyses and 
contextual interpretation. Study characteristics included 
publication year and country of origin. Participant charac-
teristics comprised sample size, sex distribution, age range, 
competitive context (e.g., grassroots, academy, or elite 
youth), and where available, indicators of biological matu-
ration. Sport type was also recorded. Data characteristics 
included the domain of features used (e.g., anthropometric, 
physical, technical, perceptual - cognitive, psychosocial, or 
multi-domain) and the methods of data acquisition (e.g., 
field-based tests, questionnaires, match-derived tracking 
data). 

Machine learning–related variables included the 
class of algorithms applied (e.g., supervised, unsupervised, 
ensemble, deep learning), model development strategies 
(e.g., feature selection, dimensionality reduction), training 
and validation procedures (e.g., cross-validation, inde-
pendent test set, external validation), and performance met-
rics reported. Where available, reporting of interpretability 
approaches (e.g., feature importance, SHapley Additive 
exPlanations, Local Interpretable Model-agnostic Explana-
tions) was also extracted. When information was missing 
or unclear, we recorded it as “not reported” without making 
assumptions. 
 
Study risk of bias assessment 
The methodological quality and risk of bias of all included 
studies were assessed using the Prediction model Risk Of 
Bias Assessment Tool (PROBAST, version 1.0), which is 
specifically designed for evaluating studies that develop, 
validate, or update predictive models (de Jong et al., 2021). 
PROBAST was chosen because machine learning applica-
tions in talent identification constitute predictive modeling 
studies, and the tool allows systematic evaluation across 
relevant domains. To complement this formal appraisal, we 
also considered a broader construct of practical trustwor-
thiness - the extent to which a model’s reported perfor-
mance can be reasonably trusted for real-world decision 
support. This concept integrates three key safeguards: (i) 
external validation on independent data to test generaliza-
bility; (ii) calibration assessment to ensure probabilistic 
predictions correspond to observed outcomes; and (iii) 
data-leakage control, referring to methodological steps that  
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prevent overlap between training and test information. 
The PROBAST framework consists of four do-

mains (Wolff et al., 2019): (i) participants, assessing 
whether the study sample is representative and appropriate 
for the intended target population; (ii) predictors, evaluat-
ing the definition, measurement, and availability of input 
variables; (iii) outcomes, assessing whether outcome defi-
nitions, timing, and measurement were appropriate; and 
(iv) analysis, focusing on modeling methods, handling of 
overfitting, missing data, validation, and performance re-
porting. Each domain includes signaling questions that 
guide judgments of “low,” “high,” or “unclear” risk of bias. 
An overall risk of bias judgment was made for each study 
by aggregating across domains, with studies classified as 
“low risk” only if all domains were rated low. If one or 
more domains were judged as high risk, the overall classi-
fication was high; if one or more were unclear with none 
rated high, the overall classification was unclear. 

Two reviewers independently performed the risk of 
bias assessment for each included study. Discrepancies in 
judgments were resolved through discussion. All judg-
ments were based exclusively on information reported in 
the published articles. 

Given the particularities of machine learning re-
search, special attention was given to signaling questions 
within the analysis domain, including handling of class im-
balance, prevention of data leakage, adequacy of validation 
strategies, and transparency of reporting model perfor-
mance metrics. 
 

Effect measures 
For the outcome domain - predictive performance of ma-
chine learning models for talent identification in team 
sports - we extracted and reported all performance metrics 
provided by the original studies. Given the diversity of ma-
chine learning methods and outcome definitions, no single 
effect measure was imposed a priori. Instead, the following 
effect measures were prioritized based on their frequency 
of use and interpretability in predictive modeling research. 

For binary classification outcomes (e.g., selected 
vs. deselected, progressed vs. not progressed), the principal 
effect measures were overall accuracy, sensitivity (recall), 
specificity, precision (positive predictive value), F1-score, 
and the area under the receiver operating characteristic 
curve (AUC-ROC). Where reported, the area under the pre-
cision–recall curve (AUC-PR) was also extracted to ac-
count for class imbalance, which is common in talent iden-
tification contexts. For multi-class or clustering outcomes 
(e.g., player profiles, position-specific categories), 
measures such as overall classification accuracy, macro- 
and micro-averaged F1-scores, and adjusted Rand index 
were extracted. 

For continuous outcomes (e.g., predictive regres-
sion of performance scores or advancement probabilities), 
effect measures included mean absolute error (MAE), root 
mean square error (RMSE), and coefficient of determina-
tion (R²). Where multiple metrics were presented for the 
same model, all were recorded, but in synthesis greater em-
phasis was placed on metrics reflecting generalizability, 
particularly those derived from independent test sets or ex-
ternal validation cohorts. 

No thresholds for minimally important differences  

were defined a priori, as such benchmarks do not currently 
exist for talent identification in team sports. Instead, results 
were interpreted with reference to established conventions 
in machine learning research (e.g., AUC-ROC values of 
0.50 indicating no discrimination, 0.70 - 0.80 acceptable, 
0.80 - 0.90 excellent, and >0.90 outstanding performance) 
while acknowledging the limitations of applying generic 
thresholds to heterogeneous sporting contexts. 

No re-expression of results into alternative effect 
measures was required, as extracted metrics were analyzed 
in their originally reported form. The choice to retain mul-
tiple performance measures was justified by the heteroge-
neous reporting practices in the field and by the need to 
provide a transparent overview of predictive model perfor-
mance rather than privileging a single effect measure. 
 
Synthesis methods 
Data from included studies were extracted into structured 
evidence tables designed to enable consistent cross-study 
comparison. Extraction focused on: (i) study identification 
details (sport, competitive level, and sample characteris-
tics); (ii) input data domains (e.g., anthropometric, physi-
cal, technical, perceptual–cognitive, psychosocial, or 
multi-domain); (iii) machine learning approach (e.g., su-
pervised classification, regression, ensemble learning, 
clustering, or deep learning methods); (iv) type of outcome 
predicted (e.g., selection vs. deselection, progression, posi-
tional classification, performance prediction, profiling, or 
maturation); (v) validation strategy and performance met-
rics; (vi) interpretability analyses or insights reported by 
authors; and (vii) main results and conclusions. 

If studies tested multiple algorithms, results were 
extracted for each model, though synthesis tables empha-
sized the best-performing or most interpretable approach. 
No data transformations, imputations, or re-analyses were 
performed; where performance metrics or validation de-
tails were missing, these were reported as “not reported.” 

To facilitate synthesis, studies were grouped ac-
cording to their primary analytic aim rather than by sport 
or algorithm. Each table followed a standardized column 
structure (General Aim, Outcomes Predicted, Key Perfor-
mance Metrics, Interpretability/Key Insights, and Main 
Results & Conclusions). To improve clarity, abbreviation 
glossaries were provided for each table, and narrative over-
views were written to introduce and contextualize the in-
cluded studies. 

Given the heterogeneity of sports, data modalities, 
machine learning methods, and outcome definitions, statis-
tical pooling or meta-analysis was not feasible. Instead, a 
structured narrative synthesis was undertaken. This narra-
tive integrated the tabular evidence with cross-cutting 
themes, focusing on: (i) recurring methodological patterns; 
(ii) relative strengths and limitations of different ML ap-
proaches; (iii) the role of interpretability in practical appli-
cation; and (iv) conceptual insights into how ML has been 
used in talent identification and development. 
 

Results 
 

Study selection 
A total of 228 records were identified through database 
searches (PubMed, n = 28; Scopus, n = 128; Web of         
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Science, n = 72). After removal of 83 duplicates, 145 rec-
ords were screened by title and abstract, of which 63 were 
excluded. The remaining 82 reports were retrieved in full 
text, with none unretrievable. Following detailed eligibility 
assessment, 55 reports were excluded, primarily due to 
population not meeting inclusion criteria (n = 53) or inter-
vention/outcomes not relevant (n = 2). Ultimately, 27 stud-
ies fulfilled all criteria and were included in the systematic 
review (Figure 1). 
 
Study characteristics 
Across the 27 studies included in this review, most (n=13) 
focused exclusively on football (soccer), reflecting its 
global prominence in youth talent pathways (Zhao et al., 
2019; Jauhiainen et al., 2019; Abidin, 2021; Owen et al., 
2022; Kelly et al., 2022; Abidin and Erdem, 2025). Other 
team sports examined included Australian Rules Football 
(Woods et al., 2018b; a; Gogos et al., 2020; Jennings et al., 
2024), rugby (Woods et al., 2018a; Owen et al., 2022), bas- 
ketball (Ge, 2024; Contreras-García et al., 2024), cricket 
(Brown et al., 2024), and volleyball (Formenti et al., 2022; 
Sanjaykumar et al., 2024). Sample sizes varied considera-
bly, from very small academy samples as n=21 (Abidin, 
2021) or n=22 (Formenti et al., 2022) to large federated da-
tasets as 13,876 (Altmann et al., 2024) or n=2222 (Abidin 
and Erdem, 2025). While most studies reported male-only 
samples, some included both sexes (de Almeida-Neto et 
al., 2023; Ge, 2024) or were female-focused (Formenti et 
al., 2022; Sanjaykumar et al., 2024). Reporting of biologi-
cal maturation was inconsistente, since some reported       

explicitly the maturation (de Almeida-Neto et al., 2023; 
Brown et al., 2024; Duncan et al., 2024), others not re-
ported in many academy datasets (Altmann et al., 2024; 
Abidin and Erdem, 2025). 
In terms of data domains, studies frequently combined an-
thropometric and physical performance measures (Craig 
and Swinton, 2021; de Almeida-Neto et al., 2023; Ge, 
2024), but increasingly incorporated technical, psycholog-
ical, perceptual–cognitive, or socio-cultural variables 
(Owen et al., 2022; Formenti et al., 2022; Brown et al., 
2024). Supervised ML approaches predominated, with 
common algorithms including Random Forest (Abidin, 
2021; Owen et al., 2022), Support Vector Machines (Razali 
et al., 2017; Abidin, 2021), penalized regression (Craig and 
Swinton, 2021; Kelly et al., 2022), and neural networks (de 
Almeida-Neto et al., 2023; Jennings et al., 2024). A smaller 
subset used unsupervised or hybrid approaches for cluster-
ing or anomaly detection (Jauhiainen et al., 2019; Ge, 
2024; Contreras-García et al., 2024). Validation practices 
varied: while some employed robust strategies such as 
nested cross-validation (Altmann et al., 2024) or prospec-
tive external testing (Jennings et al., 2024), others relied 
only on internal resampling or leave-one-out (Razali et al., 
2017; Formenti et al., 2022). Reporting of interpretability 
methods was uneven since some studies (Retzepis et al., 
2024; Altmann et al., 2024) applied SHAP values, while 
others (Woods et al., 2018b; Abidin, 2021) relied on sim-
pler feature rankings, and many did not address interpreta-
bility at all (Theagarajan and Bhanu, 2021; Sanjaykumar et 
al., 2024). 

 
 

 
 
 

 Figure 1. PRISMA flow diagram (Page et al., 2021a).  
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Table 1. Characteristics of the included studies. 

Study Sport 
Competitive 

Context 
Sample (n, sex, age range, 

maturation) 
Data Domains & Sources 

ML Approach (class, algorithms,  
model development) 

Validation Strategy 

(Abidin and 
Erdem, 
2025) 

Multiple  
(Football,  

Basketball,  
Volleyball,  

Athletics; plus 
“Others”) 

Sports high 
school entrance 
(youth selection, 

ages 14–16) 

n=2222 (620Fe-
males/1602Males),  

14–16 y, maturation not  
reported 

Device-based physical tests (coordination  
via Spark, 30m sprint, vertical jump via  

JumpR, rhythm test) + coach evaluations  
(17 criteria: physical, reaction, specialism,  

psychological) 

Deep learning (Shallow Deep Learning for 
Stage 1; novel Split-Combine-Merge Deep 

Learning [SCM-DL] for Stage 2); compared 
with Random Forest, Decision Tree, Extra 
Trees, SVC; nine feature selection methods 
(RFE variants, SelectKBest, Lasso, Boruta)

Train/test splits (70/30  
and 80/20), k-fold  

cross-validation (3, 5, 7 
folds); comparisons with 

multiple classifiers 

(Abidin, 
2021) 

Football  
(soccer) 

Altınordu  
Football  

Academy,  
U13 youth 

n=21 field players (goalkeepers 
excluded), all male, age ≈ 13 y, 
maturation not reported; syn-
thetic augmentation expanded 

to 231 instances 

Training performance data via Hit/it  
Assistant (reaction times, coordination,  
speed, agility, etc.) + Coach evaluations  
across 18 qualitative/quantitative criteria  

(converted to numeric) 

Supervised learning; seven algorithms tested 
in WEKA: ANN (MLP), SVM (SMO), Lo-
gistic Model Tree (LMT), Logistic regres-
sion, Naïve Bayes, Random Forest, CART. 

Dataset combined real + synthetic instances; 
preprocessing included normalization and 

derived position scores (D/M/F) 

10-fold  
cross-validation 

(de Almeida-
Neto et al., 
2023) 

Football  
(soccer) 

National-level 
youth athletes 

(club teams, ~V-
level competition) 

and sports  
initiation program 

n=75 males, 12–16 y (mean 
13.3 ± 1.65), ~13% SI  

practitioners, 87% athletes;  
somatic maturation estimated 

(PHV categories: pre-,  
circa-, post-PHV) 

Morphological (anthropometry, DXA: body 
mass, height, leg length, sitting height, body 
composition, BMC/BMD) + Neuromuscular 

(handgrip, medicine ball throw, vertical jump, 
countermovement jump via force plate) 

Supervised deep learning; multilayer  
perceptron (MLP) artificial neural networks 
with backpropagation; z-scores used to nor-
malize by sport/age; tested morphological, 

neuromuscular, and combined models 

Train/test split (70/30) 
with cross-validation (10 

repeated runs; all  
participants rotated 

through training/testing); 
~10,000 training iterations 

(Altmann et 
al., 2024) 

Football  
(soccer) 

German  
Bundesliga  

youth academy 
(U12–U19) 

n=13,876 players (96% male), 
11–19 y; maturation not  

explicitly reported but age  
categories (U12–U19)  

considered 

Longitudinal match-derived data:  
~32 million events across 10 years;  

position-specific technical/tactical features;  
aggregated spatiotemporal event-based data 

Supervised ML; Gradient Boosted Decision 
Trees (LightGBM); models built  
separately per playing position;  

hyperparameter tuning with Bayesian  
optimization; features reduced with  

domain knowledge + automated selection 

Nested cross-validation 
(inner loop for hyperpa-

rameter optimization, outer 
loop for model evaluation); 
train/test splits by season; 

temporal separation to 
avoid leakage 

(Brown et 
al., 2024) 

Cricket 

County Age 
Group (CAG) 
programme,  

final trial stage 

n=82 male players, 14–17 y 
(mean 15.3 ± 1.1); selected 
n=33, non-selected n=49;  

ethnicity: White British n=34, 
British South Asian n=44, 

Other n=4; maturation 
 estimated (age at PHV,  

maturity offset) 

Multidimensional: (a) physiological & anthropo-
metrical (Yo-Yo test, sprint tests, jumps, planks, 

body size, weight, PHV), (b) perceptual–cognitive 
(video occlusion batting test), (c) psychological 

(PCDEQ + multiple psychosocial questionnaires), 
(d) participation history (practice/game history, 

multi-sport), (e) socio-cultural (ethnicity,  
schooling, siblings, birth quarter, postcode) 

Supervised ML: Bayesian binomial  
regression (rSTAN); dimensionality 

 reduction via correlation  
clustering →  

21 derived features;  
weak normal prior 

Cross-validation not  
reported; model  

convergence checks  
(posterior intervals,  

n_eff, BFMI) used for  
validation; sensitivity to 
ethnicity effects tested 
with interaction models 

(Contreras-
García et al., 
2024) 

Basketball 

Spanish U14  
Minicopa (youth) 
vs. Liga Endesa 
(professionals, 

comparator group) 

n=217 U14 male players,  
13–14 y; n=391 professional 

players; maturation  
not reported 

Match-derived shooting charts  
(field goal attempts by location,  
2020–21 & 2021–22 seasons) 

Unsupervised ML (k-means and KNN 
clustering to classify shooting zones);  
outlier detection (IQR-based model)  

to identify “specialist shooters” 

5-fold cross-validation for 
cluster classification; 

train/test split (20/80) for 
KNN consistency 
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Table 1. Continue… 

Study Sport 
Competitive  

Context 
Sample (n, sex, age 
range, maturation) 

Data Domains & Sources 
ML Approach (class, algorithms, 

model development) 
Validation Strategy 

(Cornforth et 
al., 2015) 

Australian  
Rules Football 

Elite professional 
players (AFL) 

n=44 males, mean age  
20 y, ~85.7 kg;  
maturation not  

reported 

Physiological: daily ECG-derived HRV  
measures (time-, frequency-, and non-linear  
domain); Contextual: field size dimensions, 

match-day temperatures; Performance  
outcomes: GPS-derived match load,  

distance, speed zones 

Supervised ML regression; seven  
algorithms in WEKA: Gaussian  
Processes, Linear Regression, 

LeastMedSq, Multilayer Perceptron, 
PLS Classifier, RBF Network,  

SMOreg; feature selection via PCA vs.
wrapper subset + Genetic Algorithm

10-fold cross-validation; 
train/holdout  
splits tested 

(Craig and 
Swinton, 
2021) 

Football 
(soccer) 

Elite Scottish  
soccer academy 

(U10–U17),  
10-year  

follow-up 

n=512 male players, aged 
10–17 at entry; 100 

awarded pro contracts; 
maturation not directly  
reported; strong relative 

age effect observed 

Anthropometric (height, weight, BMI) and  
physical performance (5, 10, 20m sprint  

times; countermovement jump; Yo-Yo IR1) 
 collected longitudinally (1–14 sessions/player) 

Supervised ML: LASSO logistic  
regression (with mixed-effects  

models for associations); multiple  
imputation for missing data 

10-fold cross-validation to 
tune LASSO penalty; boot-

strap (10,000 samples); 
train/test split (2/3–1/3) 
for predictive evaluation 

(Duncan et 
al., 2024) 

Football  
(soccer) 

Grassroots  
club football in 

England (County 
FA structure) 

n=162 boys, 7–14 y  
(mean 10.5 ± 2.1);  

biological maturation  
via APHV (Moore  

equation) 

Anthropometry; maturity offset (APHV);  
fundamental movement skills via TGMD-3 with 
video scoring; perceived physical competence 

(PPASC); physical fitness (15 m sprint speed—
timing gates; standing long jump); coach ratings 
(technical, social, physical, effort, overall); birth-

quartile; technical skill test: UGent dribbling  
(procedural details reported) 

Supervised ML: linear, ridge,  
lasso, random forest, boosted trees;  
recursive feature elimination; L1/L2 
regularisation; collinearity control;  

Python implementation 

Train/validation/test split 
80/10/10 per age band;  
5-fold cross-validation;  

age-band stratification to 
avoid leakage/under- 

representation 

(Formenti et 
al., 2022) 

Volleyball 

Youth Italian  
championship,  

regional vs.  
provincial levels 

n=26 female players  
(13 regional, 13 provin-

cial), 13–15 y;  
maturation not reported 

Volleyball-specific skill battery (setting, passing, 
spiking, serving; accuracy + technique); Physical 
performance (modified T-test COD, CMJ); Cog-
nitive (Flanker task – executive control; Visual 

Search task – perceptual speed) 

Supervised ML: Linear Discriminant 
Analysis, Logistic Regression,  

SVM, Decision Tree; features =  
volleyball skills + physical +  

cognitive measures 

Stratified 5-fold cross-vali-
dation 

(Ge, 2024) Basketball 
Secondary  

school training 
teams 

n=40 (20 boys,  
20 girls), adolescents 

(~13–15 y); maturation  
not reported 

Physical fitness tests (lung capacity, standing long 
jump, grip strength, 1000 m run boys / 800 m run 

girls); ~5000 test data entries used for model 
training/validation 

Unsupervised feature learning  
(CNN + Autoencoder); Gaussian  
Mixture Model (EM algorithm  

for parameter estimation); model 
termed CNN-AE-MG 

Train/test split 4:1 
(4000/1000 records);  

ablation comparisons vs. 
CNN, CNN-AE, CNN-AE-
SG; consistency tested with 

Bland-Altman plots 

(Gogos et al., 
2020) 

Australian  
Rules Football 

AFL U18  
National/State/other 

combines; relates 
combine to senior 
career outcomes 
(retired/delisted 

 cohort) 

n=1,488 combine  
attendees (1999–2016); 

summary models on 
n=536 with ≥1 AFL  

player rating;  
mean age ≈18.5 y 

Combine anthropometrics & physical tests (e.g., 
20 m sprint, Yo-Yo IR, jumps), plus draft order & 

position; career outcomes from AFLTables & 
Champion Data 

Linear models for ratings/ 
rankings; boosted regression  

trees for matches played  
(gradient-boosted ML) 

Model fit assessed with BIC; 
no external validation;  

retrospective explanatory 
analysis 
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Table 1. Continue… 

Study Sport 
Competitive  

Context 
Sample (n, sex, age range, 

maturation) 
Data Domains & Sources 

ML Approach (class, algorithms, 
model development) 

Validation Strategy 

(Jauhiainen 
et al., 2019) 

Football 
(soccer) 

National TID 
database; focus on 14-y 

Finnish juniors and 
“academy player”  

labelling 

N=951 14-year-old boys; 
minority “academy” 

class n≈14; tests/events 
2011–2017 

Physical tests (technical, speed, agility)  
+ self-assessment (perceived competence, 

tactical skills, motivation) collected at 
biannual events; several data representations 

(phys, quest, combined) 

One-class SVM (RBF) framed  
as anomaly detection to flag potential 

elite; PCA for decorrelation; 
k-NN imputation 

Performance evaluated with 
AUC-ROC on held labels 

after unsupervised training; 
mean AUC ~0.763 across 

hyperparameters 

(Jennings et 
al., 2024) 

Australian  
Rules Football

Elite-junior AFL  
talent pathway;  

prospective  
prediction of 2021  

National Draft 

n=708 males; train  
2017–2020 (n=465),  
prospective test 2021 

(n=243) 

Physical testing, in-game movement (GPS),  
and technical involvements; league-wide  

multi-season dataset 

Logistic regression vs neural  
networks to classify drafted vs not 

drafted; operating at multiple  
cut-off thresholds 

Prospective external hold-
out (2017–20→2021) with 

sensitivity/specificity/ 
accuracy comparisons 

(Kelly et al., 
2022) 

Football  
(soccer) 

English professional 
academy; U9–U16 de-

velopment and  
U18 selection/ 

deselection (contract) 

Study 1: n=98,  
U9–U16;  

Study 2: n=18,  
U18 (male) 

Multidomain 53 features across 8 methods  
over 2 seasons (technical/tactical, physical,  

psychological, social; e.g., PCDEQ,  
maturation %PAH, match hours) 

Penalized regression (cross-validated 
LASSO via glmnet) predicting (a)  

review ratings; (b) achieving  
a pro contract 

Cross-validation (CV)  
noted for LASSO;  

internal only 

(Kilian et al., 
2023) 

Football  
(soccer) 

Youth elite soccer  
talent-promotion  

program (DFB) — 
methodological  

evaluation on real  
program data 

Sample details not fully 
specified in abstract text; 

applied to a set of multidi-
mensional performance  
assessments within the  
program (youth cohort) 

Multidomain performance battery used for 
 latent factor structure; evaluation contrasts  

with PCA; study funded  
by DFB talent program 

Deep latent-variable factor model: 
VAE estimator with importance-
weighted variational inference +  
normalizing-flow priors; linear,  
identifiable measurement model  

(generalized EFA) 

Robustness discussed; no 
classic predictive CV—focus 
is dimensionality reduction 
and identifiability; (not a  

selection classifier) 

(López-De-
Armentia, 
2024) 

Football  
(soccer) 

Multi-league women’s 
scouting context; data 

scarcity/coverage  
issues addressed by tool

~12,000 players tracked 
across ~30 leagues; basic 
roster & participation info 

(adults and youth) 

Aggregated web-sourced player metadata  
(age, position, height, market value,  

contracts, injuries) and minutes played;  
alert generation pipeline 

Rule-/criteria-driven alerts; “AI-
powered” extraction mentioned,  
but no supervised model for TID  

classification is specified 

Expert usability evaluation; 
no predictive CV/hold-out 

(Owen et al., 
2022) 

Rugby  
Union 

Regional age-grade 
academy selection  

(U16 & U18) in North 
Wales; talent camps 

n=104 male; 
Mage=15.47±0.80;  

U16 n=62; U18 n=42;  
66 selected/38 not 

21 physiological (demographics,  
anthropometrics, sprint/power, grip, etc.)  

+ 47 psychosocial (burnout, motivation, trait 
measures, EI, coping) assessed at selection days

Bayesian pattern-recognition  
pipeline to classify selected vs non- 
selected; position-specific models 

(forwards/backs) 

Leave-one-out cross- 
validation (LOOCV) to  

minimize overfitting; inter-
nal validation only 

(Razali et al., 
2017) 

Football  
(soccer) 

Bukit Jalil Sports 
School (academy) 

n=100; 15–17 y;  
sex not reported 

Coach-rated physical, mental, and  
technical skills (1–10); Football Player  

Information System (BJSS) 

Supervised classification; Bayesian 
Networks, Decision Tree, k-NN; 

WEKA implementation; GK excluded

Leave-one-out CV  
(small sample size) 

(Retzepis et 
al., 2024) 

Team sports 
Preadolescent  

(≈11 y) team-sport  
athletes 

n≈92; ~11 y; sex not  
reported 

Anthropometry & motor tests (e.g., leg  
length, sitting height, weight, jumps)  

used to classify PHV 

Supervised classification; Random 
Forest, Logistic Regression, Neural 
Network; forward feature selection 

with stratified 10-fold CV 

10-fold stratified cross- 
validation (feature  
selection & tuning) 

(Sandamal et 
al., 2024) 

Football (soc-
cer) 

University-level players 
in Karakalpakstan vs. 

Khwarazm 
n=60; 18–22 y; male 

33 features (anthropometric, psychological, 
physical); questionnaires & field tests 

Supervised regression/classification; 
Linear model, k-NN, Random Forest, 
XGBoost; SHAP for feature ranking

Train/test split with  
repeated evaluations;  

details limited 
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Table 1. Continue… 

Study Sport 
Competitive  

Context 
Sample (n, sex, age 
range, maturation) 

Data Domains & Sources 
ML Approach (class, algorithms, 

model development) 
Validation Strategy 

(Sanjayku-
mar et al., 
2024) 

Volleyball 
(women) 

College-level  
players (state &  
national level) 

n not reported;  
college-aged (≥18 y);  

female 

Technical skill and execution metrics;  
likely field-based assessments 

Supervised regression; KNN, Multiple 
Linear Regression, Lasso, Ridge,  

Elastic Net, Random Forest, XGBoost

Model evaluation via  
MAE, MSE, R²; split/CV  

details not reported 

(Theagarajan 
and Bhanu, 
2021) 

Football (soccer) 

High-school and 
professional  
competitions 

(video) 

Image dataset: 49,950  
images; includes high-
school (youth) and pros 

Match video frames; automated player/ 
team/ball detection; event detection 

Deep learning computer vision  
(object detection/tracking;  

event detection); supervised 

Runtime and accuracy 
 metrics discussed; formal 
CV/test split not reported 

(Venkata-
raman et al., 
2024) 

Football (soccer) 

Conceptual  
scouting  

framework;  
professional case 

studies 

Sample not reported;  
case studies (e.g., Kevin 

De Bruyne); adults 

Perceptual–cognitive attributes via  
YUVA-SQ questionnaire 

None (scouting tool; no ML modeling) Not applicable 

(Woods et 
al., 2018b) 

Australian Rules 
Football (AFL) 

Elite junior 
(U18 national 

championships) 

n=244 players; 680  
observations;  

17.6 ± 0.6 y; male 

12 in-game technical skill indicators  
(match statistics) 

Supervised classification; LDA,  
Random Forest, PART (decision list); 
variable importance & rule extraction

Internal classification  
accuracy; external  

validation not reported 

(Woods et 
al., 2018a) 

Rugby League 

Elite youth (U20) 
vs. senior (not  

reportedL)  
competition com-

parison 

U20: 372 obs;  
not reportedL: 378 obs; 

male 

Team performance indicators  
from matches (not reportedL & U20) 

Supervised classification tree to  
distinguish competitions;  

interpretable rules 

Internal classification  
(apparent accuracy);  
external validation  

not reported 

(Zhao et al., 
2019) 

Multi-sport (elite 
youth) 

Elite sport school (6 
sports; U15–U16)

n=97; male; U15–U16; 
training load ~20.8 h/week

18 anthropometric, 5 physiological,  
2 motor tests; standardized  

lab/field assessments 

Supervised multiclass classification; 
Linear Discriminant Analysis;  

Multilayer Perceptron; stepwise DA; 
repeated MLP training/testing 

Leave-one-out (DA);  
repeated 80/10/10 splits  

for MLP 

 
The Figure 2 summarizes the distribution of methodological rigor across different 

machine learning approaches used in youth-focused talent identification and development 
research. The chart highlights that most studies employed supervised, non-deep learning 
models with cross-validation as the primary evaluation method, while nested, temporal, 
or external validation approaches were rare. 
 
Risk of bias in studies 
Across the 27 included studies, the PROBAST assessment (Table 2) showed that 19 stud-
ies (70.4%) were rated Low risk of bias for Participants, and 20 studies (74.1%) for Pre-
dictors. In contrast, 13 studies (48.1%) were rated Unclear for Outcomes, and 13 studies 
(48.1%) were judged High risk in Analysis. Overall, 16 studies (59.3%) were assessed as 
having High risk of bias. Regarding applicability, 11 studies (40.7%) raised Some concern 
for Participants, 15 studies (55.6%) were rated Low concern for Predictors, and 11 studies 
(40.7%) were judged as having High concern for Outcomes. 

Synthesis of studies 
Table 3 synthesizes studies that focus primarily on selection prediction within talent iden-
tification systems, where ML models were used to determine whether athletes would be 
admitted, retained, or promoted at different stages of development. These works investi-
gated diverse sports and settings, ranging from youth soccer academies (Jauhiainen et al., 
2019; Craig and Swinton, 2021; Altmann et al., 2024), cricket county programes (Brown 
et al., 2024), rugby union regional selection (Owen et al., 2022), and Australian football 
drafts (Jennings et al., 2024). Studies also included models for admission and branch al-
location in sport schools (Abidin and Erdem, 2025), as well as selection support tools for 
school athletes (Theagarajan and Bhanu, 2021). 

Table 4 summarizes studies that applied ML to predict technical or physiological 
performance outcomes in sport. A study (Cornforth et al., 2015) reealed that regression 
models using pre-match heart rate variability (HRV) and environmental data could predict 
in-game outputs in Australian football. More recent studies employed ML to model skill-
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specific outcomes in youth soccer, such as dribbling performance (Duncan et al., 2024) 
and test-based fitness under environmental stressors (Sandamal et al., 2024). Similarly, 
Sanjaykumar et al. (Sanjaykumar et al., 2024) showed that Random Forest and XGBoost  

 

could accurately predict volleyball performance from anthropometric and body composi-
tion data. 

 
 

 

 

 
 

     Figure 2. Validation rigor and machine learning approaches in youth talent identification studies. 

      Table 2. Risk of bias assessment using PROBAST. 

Study 
PROBAST 
Participants 

PROBAST 
Predictors 

PROBAST 
Outcomes 

PROBAST 
Analysis 

Overall 
ROB 

Applicability  
(Participants) 

Applicability 
(Predictors) 

Applicability 
(Outcomes) 

(Abidin and Erdem, 2025) Low Unclear Low High High Some concern Some concern Low concern 
(Abidin, 2021) Low Unclear Low High High Some concern Some concern Low concern 
(de Almeida-Neto et al., 2023) Low Low High Unclear High Some concern Some concern High concern 
(Altmann et al., 2024) Low Low Low Unclear Unclear Some concern Low–moderate concern Low concern 
(Brown et al., 2024) Low Low Low High High Some concern Some concern Low concern 
(Contreras-García et al., 2024) Unclear Low Unclear Unclear High Low concern Low concern High concern 
(Cornforth et al., 2015) Low Low Unclear Unclear High High concern Low concern High concern 
(Craig and Swinton, 2021) Low Low Low Low Low Some concern Low concern Low concern 
(Duncan et al., 2024) Low Low Unclear Unclear Unclear Some concern Low concern High concern 
(Formenti et al., 2022) Low Low Low High High Some concern Low concern Moderate concern 
(Ge, 2024) Unclear Unclear Unclear High High Unclear High concern High concern 
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      Table 2. Continue… 

Study 
PROBAST 
Participants 

PROBAST 
Predictors 

PROBAST 
Outcomes 

PROBAST 
Analysis 

Overall 
ROB 

Applicability  
(Participants) 

Applicability 
(Predictors) 

Applicability 
(Outcomes) 

(Gogos et al., 2020) Low Low Unclear Unclear Unclear High concern Low concern High concern 
(Jauhiainen et al., 2019) Low Low Unclear Unclear Low Low Low Low–moderate concern 
(Jennings et al., 2024) Low Low Low Low/Unclear Low Low concern Low concern. Low concern 
(Kelly et al., 2022) Low Low Unclear Unclear Low Low Low Low–moderate concern 
(Kilian et al., 2023) Low Low High High High Low concern Low concern High concern 
(López-De-Armentia, 2024) Low Some concerns High High High Some concern High concern High concern 
(Owen et al., 2022) Low Low Unclear Unclear Low Low Low Low–moderate concern 
(Razali et al., 2017) Unclear Low High High High Unclear Low Low–moderate concern 
(Retzepis et al., 2024) Low Low Low Low Low Low concern Low concern Low concern 
(Sandamal et al., 2024) Unclear Low Unclear High High Some concern Low High 
(Sanjaykumar et al., 2024) Unclear Unclear High High High Unclear Unclear High concern 
(Theagarajan and Bhanu, 2021) Unclear Low High High High Some concern Some concern High 
(Venkataraman et al., 2024) Unclear Unclear Unclear High High Unclear Unclear Unclear 
(Woods et al., 2018b) Low Low Unclear Unclear Low Low Low Low–moderate concern 
(Woods et al., 2018a) Low Low Unclear Unclear Low Low Unclear Low–moderate concern 
(Zhao et al., 2019) Unclear Unclear Unclear High High Unclear Unclear Unclear 

 
 
Table 3. Synthesis of individual studies focusing exclusively in selection prediction. 
Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions 

(Abidin and 
Erdem, 
2025) 

Selection  
Prediction 

Stage 1: Admission (Pass/Fail). 
Stage 2: Branch allocation 
(Football, Basketball, Volleyball, 
Athletics, Other). 

Stage 1: 98.9% accuracy (SDL).  
Stage 2: 97.4% accuracy, MCC 96.6% 
(SCM-DL, 6 features). 

Feature selection revealed 6 key  
features spanning device tests & 
coach ratings; novel SCM-DL  
architecture captured hierarchical  
relations. 

Authors conclude SCM-DL outperforms 
classical ML, can generalize to  
hierarchical datasets, and helps coaches  
prioritize features. External validity  
remains untested. 

(Altmann et 
al., 2024) 

Selection  
Prediction 

Selection vs. deselection to the 
next age group (U12–U19)  
in elite German youth soccer  
academy across 7 years. 

Best model XGBoost: ROC-AUC 0.69,  
F1-score 0.84. Models more sensitive  
to “selected” than “deselected.” 

Physical & physiological factors  
(linear sprint, COD sprint, CMJ,  
aerobic speed reserve) and soccer-
specific skill most influential.  
Psychological measures of medium 
importance; health, age, and 
position-related variables incon-
sistent. 

Authors conclude physical and skill- 
related measures are most decisive in  
selection/deselection; psychological factors 
moderate contributors. Suggests focusing 
academy monitoring on speed, power,  
endurance, and soccer-specific skill.  
Limitations: internal validation only, mod-
erate discriminative ability (AUC <0.70). 

AUC = Area Under the Curve; AUC-PR = Area Under the Precision–Recall Curve; BMI = Body Mass Index; BSA = British South Asian; CAG = County Age Group; CMJ = Countermovement Jump; COD = Change of Direction; 
DT = Decision Tree; F1 = F1-score (harmonic mean of precision and recall); IR1 (YoYo IR1) = Yo-Yo Intermittent Recovery Test, Level 1; KNN = K-Nearest Neighbors; LD/LDA = Linear Discriminant Analysis; LOOCV = 
Leave-One-Out Cross-Validation; LR = Logistic Regression; MCC = Matthews Correlation Coefficient; NN = Neural Network; Q1–Q4 = Birth quartiles (Relative Age Effect); RAE = Relative Age Effect; RF = Random Forest; 
ROC-AUC = Receiver Operating Characteristic – Area Under the Curve; SCM-DL = Split–Combine–Merge Deep Learning; SDL = Shallow Deep Learning; SVM = Support Vector Machine. 
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Table 3. Continue… 
Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions 

(Brown et 
al., 2024) 

Selection 
 Prediction & 
Profiling 

Differences between se-
lected vs. non-selected 
youth male cricketers 
(U14–17) and between 
White British (WB) vs. 
British South Asian (BSA) 
selected players  
in County Age Group 
(CAG)  programmes. 

Not accuracy-based: model estimated 
probability shifts. Positive predictors 
of selection: athleticism, wellbeing/co-
hesion, birth in Q2–Q3, older brothers. 
Negative predictors: higher psych. 
scores, antisocial behaviour, younger 
brothers/older sisters. Ethnic group dif-
ferences observed in athleticism, well-
being, distress, antisocial behaviour. 

Multidimensional input: 104  
characteristics across 5 domains (physiologi-
cal, perceptual-cognitive, psychological, par-
ticipation history, socio-cultural). Analysis 
identified interaction between family struc-
ture, socio-cultural factors, and selection 
outcomes. 

Authors conclude both athletic and socio-cultural variables 
play significant roles in selection. Highlight disparities: 
despite high BSA participation in grassroots cricket, nder-
representation persists at selection level. Suggest systemic 
bias may influence CAG selection. Findings exploratory; 
sample small (N=82). 

(Craig  
and  
Swinton, 
2021) 

Selection 
Prediction 

Whether anthropometric 
(height, mass, BMI) and  
physical performance tests 
(20m sprint, CMJ, YoYo 
IR1) predict awarding of  
professional contracts in an 
elite Scottish soccer  
academy over 10 years. 

Despite significant mean  
differences (successful players 
taller, faster, higher CMJ),  
predictive accuracy was near  
random: error proportion 0.43 (train), 
0.45 (test) vs. 0.50 for random  
guessing. 

Relative age effect (RAE) very strong:  
50% of successful contracts born in Q1. 
CMJ, stature, and sprint had small  
associations but high overlap with non- 
successful players. No reliable case-level 
prediction possible. 

Authors conclude that anthropometric and physical  
performance profiling alone cannot predict professional 
contract success within already talented academy players. 
Recommend data be used to guide training, not selection. 
Suggest holistic models integrating technical, tactical, 
 psychological, and sociocultural variables, plus coach  
expertise. Stress need for addressing RAE bias (e.g.,  
bio-banding, scout education). 

(Formenti 
et al., 
2022) 

Selection 
Prediction 

Classification of female 
junior volleyball players  
as regional vs. provincial 
level based on volleyball-
specific skills, physical 
performance, and  
cognitive functions. 

Decision Tree: Precision 93%,  
Recall 73%, F1 = 0.83. Other  
models (LD, LR, SVM) performed 
lower (Precision 47–63%,  
Recall 57–73%). 

DT identified passing and spiking technique 
plus cognitive task response times (Flanker 
congruent/incongruent, Visual search 10/15 
items) as key discriminators. Physical tests 
(COD, CMJ) contributed less. 

Authors conclude that higher-level players outperform 
lower-level peers across volleyball skills, COD, CMJ, and 
cognitive functions. ML results emphasize the role of 
cognitive functions + technical skills (passing, spiking) in 
discriminating competitive level. Practical recommenda-
tion: include training of both volleyball-specific tech-
niques and executive/perceptual skills in youth develop-
ment. 

(Jauhiainen 
et al., 
2019) 

Selection 
Prediction 

Detection of potential elite 
youth soccer players 
(academy contracts) from 
large dataset of junior 
players (N=951, age 14). 

Best performance with “phys large” 
dataset (N=951, 16 physical test  
variables): AUC-ROC = 0.763 
(±0.007), AUC-PR = 0.960,  
Sensitivity = 0.80, Specificity = 0.61. 
Smaller sets (“phys+quest”, “quest”) 
performed worse (AUC-ROC 
0.58–0.66). 

Demonstrated utility of anomaly detection 
for imbalanced TID problems (14 academy 
vs. 937 non-academy). Physical tests (jump, 
sprint, agility) more predictive than  
questionnaire/self-assessment. Nonlinear 
SVM outperformed linear baseline. 

Authors conclude that one-class SVM can moderately 
identify future academy players but specificity remains 
limited (many false positives). Results promising but not 
sufficient for stand-alone selection. Recommend larger da-
tasets, longitudinal validation, and integration of multidi-
mensional variables. 

AUC = Area Under the Curve; AUC-PR = Area Under the Precision–Recall Curve; BMI = Body Mass Index; BSA = British South Asian; CAG = County Age Group; CMJ = Countermovement Jump; COD = Change of Direction; 
DT = Decision Tree; F1 = F1-score (harmonic mean of precision and recall); IR1 (YoYo IR1) = Yo-Yo Intermittent Recovery Test, Level 1; KNN = K-Nearest Neighbors; LD/LDA = Linear Discriminant Analysis; LOOCV = 
Leave-One-Out Cross-Validation; LR = Logistic Regression; MCC = Matthews Correlation Coefficient; NN = Neural Network; Q1–Q4 = Birth quartiles (Relative Age Effect); RAE = Relative Age Effect; RF = Random Forest; 
ROC-AUC = Receiver Operating Characteristic – Area Under the Curve; SCM-DL = Split–Combine–Merge Deep Learning; SDL = Shallow Deep Learning; SVM = Support Vector Machine. 
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Table 3. Continue… 
Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions 

(Jennings 
et al., 
2024) 

Selection 
Prediction 

Drafted vs. not-drafted 
 players in the AFL  
National Draft (2021)  
using physical, GPS  
(in-game movement), 
and technical 
 involvement data. 

Neural networks consistently outper-
formed logistic regression: NN speci-
ficity = 79 ± 13%, sensitivity = 61 ± 
24%, accuracy = 76 ± 8% vs. LR spec-
ificity = 73 ± 15%, sensitivity = 29 ± 
14%, accuracy = 66 ± 11%. At draft-
rate threshold (15%) and convergence 
threshold (35%), NN classified more 
drafted players in 88% of comparisons.

Neural networks handled unfactored, high-
dimensional inputs better than LR, capturing 
nonlinear relationships. Logistic regression 
benefited only when data were factored 
(dimensionality reduction). Key insight:  
sensitivity (identifying drafted players) is 
paramount, and NN achieved superior  
balance of sensitivity and specificity. 

Authors conclude that NN models are more effective than 
logistic regression for predicting draft outcome, particu-
larly when identifying drafted players (sensitivity).  
Practical implications: clubs may apply NN-based models 
to complement subjective scouting and reduce bias.  
Limitations: data restricted to one state league,  
psychosocial variables absent, career success beyond draft 
not considered. 

(Owen et 
al., 2022) 

Selection 
Prediction 

Selection vs. non-selection 
to regional U16 and U18 
rugby squads based on 21  
physiological and 47  
psychosocial factors.  
Analyses run for all  
players, forwards, and 
backs. 

Physiological models: 67.6% (all), 
70.1% (forwards), 62.5% (backs).  
Psychosocial models: 62.3% (all), 
73.7% (forwards), 60.4% (backs). 
Specificity higher than sensitivity 
in all cases. 

Key physiological predictors: greater hand 
grip strength, faster 10m & 40m sprints, 
higher power and momentum. Key  
psychosocial predictors: lower burnout,  
reduced exhaustion, lower reduced sense of 
accomplishment, lower life stress (forwards), 
and lower difficulty describing feelings  
(forwards). For backs, lower interjected  
regulation and lower burnout were features. 

Authors conclude physiological factors (strength, speed, 
power) are more predictive of rugby selection than psy-
chosocial ones, but psychosocial variables (especially 
lower burnout and stress) also play a significant role.  
Position-specific differences exist (e.g., emotional  
regulation markers more relevant for forwards).  
Recommend holistic, position-tailored selection  
frameworks including psychosocial screening alongside 
physiological testing. 

(Theagara-
jan and 
Bhanu, 
2021) 

Selection 
Support 

Classification of students’ 
sports-specific talent cate-
gory (basketball, volley-
ball, football, athletics, ka-
baddi, weightlifting) based 
on anthropometric and 
physical fitness attributes. 

Random Forest highest: 96.2% accu-
racy; SVM 95.5%; KNN 95.2%; Deci-
sion Tree 92.6%; Naïve Bayes 89.8%. 

Feature importance analysis showed attrib-
utes like height, weight, speed, and endur-
ance strongly influenced classification. Mod-
els could allocate students to most likely 
successful sport pathway. 

Authors conclude ML, especially RF and SVM, can relia-
bly classify school-level athletes into suitable sports, 
providing data-driven support for talent identification and 
allocation. Limitations: small, single-institution dataset; 
attributes mostly physical, excluding psychological/tech-
nical. Recommend broader variables and longitudinal vali-
dation. 

AUC = Area Under the Curve; AUC-PR = Area Under the Precision–Recall Curve; BMI = Body Mass Index; BSA = British South Asian; CAG = County Age Group; CMJ = Countermovement Jump; COD = Change of Direction; 
DT = Decision Tree; F1 = F1-score (harmonic mean of precision and recall); IR1 (YoYo IR1) = Yo-Yo Intermittent Recovery Test, Level 1; KNN = K-Nearest Neighbors; LD/LDA = Linear Discriminant Analysis; LOOCV = 
Leave-One-Out Cross-Validation; LR = Logistic Regression; MCC = Matthews Correlation Coefficient; NN = Neural Network; Q1–Q4 = Birth quartiles (Relative Age Effect); RAE = Relative Age Effect; RF = Random Forest; 
ROC-AUC = Receiver Operating Characteristic – Area Under the Curve; SCM-DL = Split–Combine–Merge Deep Learning; SDL = Shallow Deep Learning; SVM = Support Vector Machine. 
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Table 4. Synthesis of individual studies focusing exclusively in performance prediction. 

Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions 

(Cornforth 
et al., 2015) 

Performance 
Prediction 

Prediction of in-game perfor-
mance in elite Australian 
football players using pre-
match HRV measures (time, 
frequency, nonlinear do-
mains) plus environmen-
tal/field data. 

Best correlations with GA wrapper + regres-
sion algorithms: Walk r=0.76, Jog r=0.75, 
Cruise r=0.73, Player Load r=0.72, Match 
Distance r=0.73. PCA improved slightly 
over all-variables approach, but GA wrapper 
yielded the highest predictive performance 
(mean r=0.60 vs. 0.49–0.53). 

Highlighted the value of advanced regres-
sion (esp. SMOreg, Gaussian Processes) 
combined with feature selection. Identified 
HRV-derived features (esp. nonlinear 
measures) plus environmental conditions 
(temperature, field size) as significant con-
tributors to match performance. 

Authors conclude sophisticated regression 
models can predict match performance 
>0.70 correlation from HRV and environ-
mental data. Potential to support player se-
lection decisions and training load adjust-
ments tailored to field dimensions and 
match-day conditions. Early demonstration 
of sport informatics potential in team 
sport. 

(Duncan et 
al., 2024) 

Performance 
Prediction 

Dribbling skill (UGent drib-
bling test, skill differential 
with/without ball). 

Initial accuracy: linear ~57%, ridge ~48%, 
lasso ~34%, RF ~68%, boosted ~66%. When 
stratified by age band: RF 98.6%, boosted 
trees 96.1%, lasso 94.1%, linear 91.9%. 

Feature importance: FMS score most influ-
ential, followed by coach overall rating, 
years of playing experience, and APHV. 
Birth quartile and chronological age least 
important. 

ML showed technical skills can be pre-
dicted with high accuracy from multidi-
mensional inputs, especially FMS. Sup-
ports theory that broad motor skill compe-
tence underpins technical soccer ability. 
Coaches should emphasize FMS training 
before sport-specific drills. Suggests a shift 
away from over-reliance on physical test-
ing alone. 

(Sandamal 
et al., 2024) 

Performance 
Prediction 

Prediction of soccer players’ 
performance in field-based 
tests: Dribbling Shuttle Test 
(DSt), Goal Accuracy Test 
(GAt), and Yo-Yo Intermit-
tent Recovery Test Level 1 
(YYIRT1). 

XGBoost consistently outperformed RF and 
KNN across tests (highest R² and lowest er-
ror). RF showed moderate accuracy, KNN 
lowest. Performance varied between cohorts, 
with Karakalpakstan athletes showing re-
duced predicted fitness values. 

SHAP global explanations: anthropometric 
(sitting height, meso breadth), hematologi-
cal, and hormonal markers (E2, IGF-1, cor-
tisol, testosterone) emerged as top predic-
tors. LIME local explanations confirmed 
hormonal differences: E2, IGF-1, cortisol 
strongly impacted fitness in environmentally 
exposed group, while testosterone was more 
influential in controls. 

Authors conclude explainable ML (esp. 
XGBoost + SHAP/LIME) offers accurate 
and interpretable fitness prediction in 
young soccer players. Results highlight 
negative effects of environmental degrada-
tion (Aral Sea region) on hormonal bal-
ance and physical performance. Study 
demonstrates value of explainable AI for 
screening and tailoring training in vulnera-
ble populations. Limitations: relatively 
small cohorts, region-specific findings, no 
external validation. 

(Sanjayku-
mar et al., 
2024) 

Performance 
Prediction  

Prediction of on-court per-
formance based on demo-
graphic and physical attrib-
utes (age, height, weight, fat 
%, muscle mass, bone mass, 
BMI). 

RF: R²=0.9418, accuracy=94.18%, 
RMSE=2.67. XGBoost: R²=0.9276, 
acc=92.76%, RMSE=2.98. Linear Regres-
sion weaker: R²=0.7531, acc=75.31%, 
RMSE=5.51. 

Correlation analysis: Height (r=0.879), mus-
cle mass (r=0.653), bone mass (r=0.622) 
strongly positively related to performance. 
BMI not significant (r=0.04). RF captured 
nonlinearities best; XGBoost close. 

Authors conclude ML—especially Ran-
dom Forest—provides accurate and objec-
tive prediction of volleyball performance 
from physical attributes. Supports more 
data-driven talent ID, moving beyond sub-
jective scouting. Future work: integrate 
skill and psychological factors, extend to 
diverse populations. 

ACC = Accuracy; AUC = Area Under the Curve; APHV = Age at Peak Height Velocity; BMI = Body Mass Index; DSt = Dribbling Shuttle Test; FMS = Fundamental Movement Skills; GA = Genetic Algorithm; GAt = Goal 
Accuracy Test; HRV = Heart Rate Variability; IGF-1 = Insulin-like Growth Factor 1; KNN = K-Nearest Neighbors; LASSO = Least Absolute Shrinkage and Selection Operator; LIME = Local Interpretable Model-agnostic 
Explanations; PCA = Principal Component Analysis; R² = Coefficient of Determination; RF = Random Forest; RMSE = Root Mean Squared Error; SHAP = SHapley Additive exPlanations; SMOreg = Sequential Minimal 
Optimization regression; XGBoost = Extreme Gradient Boosting; YYIRT1 = Yo-Yo Intermittent Recovery Test, Level 1.  
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Table 5 compiles studies exploring the use of ML for team formation and playing 
position classification, where algorithms aim to replicate or optimize decisions tradition-
ally made by coaches. A study (Abidin, 2021) tested multiple ML models for both position 
assignment and lineup generation in youth soccer, demonstrating high concordance with 
coach decisions. Other study (Razali et al., 2017) developed a prototype system to classify 
football players into positional roles using physical, mental, and technical ratings, vali-
dated by expert coach evaluation. Finally a study (Woods et al., 2018b) examined posi-
tional classification in elite junior Australian football using technical skill indicators, high-
lighting the limitations of conventional statistics for discriminating playing roles. 
           Table 6 includes studies that address broader or emerging applications of ML in 
talent identification and development, spanning orientation, specialization, profiling, mat- 

uration, and scouting support. Examples include orientation of youth into appropriate 
sports using morphological and neuromuscular profiles (de Almeida-Neto et al., 2023), 
detection of premature specialization in basketball (Contreras-García et al., 2024), fitness 
assessment with deep learning (Ge, 2024), and forecasting AFL career outcomes (Gogos 
et al., 2020). Other studies investigated multidimensional predictors of progression (Kelly 
et al., 2022), latent factor modeling of youth soccer assessments (Kilian et al., 2023), and 
scouting frameworks in women’s and men’s football (Venkataraman et al., 2024; López-
De-Armentia, 2024). A study (Retzepis et al., 2024) applied explainable ML to maturation  
prediction, while other (Woods et al., 2018a) compared gameplay profiles of youth vs.  
senior rugby league. Finally a study (Zhao et al., 2019) demonstrated cross-sport profiling 
with anthropometric and physiological tests. 
 

Table 5. Synthesis of individual studies focusing in playing position/team formation prediction. 
Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions 

(Abidin, 
2021) 

Selection  
Prediction  
& Team  
Formation 

Player position classification 
(Defender, Midfielder,  
Forward) and lineup for-
mation for U13 Altınordu 
Football Academy players. 
Compared ML lineups with 
coach’s ideal lineup and 20 
match lineups. 

RF best at 93.9% accuracy, κ=0.91; MLP 
92.6%, LMT 90.5%. Adding Hit/it training 
data improved accuracy across all  
algorithms vs. baseline (e.g., RF 81.8% → 
93.9%). For team formation, lineups of 
SMO & SimpleCART closest to coach 
(Pearson r≈0.975). Lineup similarity with 
match lineups averaged 89.36%. 

Demonstrated importance of  
combining coach evaluation + training 
device (Hit/it) data. Synthetic data 
generation addressed small sample. 
Lineup similarity analysis showed ML 
can approximate coach/team decisions 
without using match data. 

Authors conclude ML models (esp. RF, MLP, LMT) 
can reliably support player selection and lineup 
formation, potentially integrated into weekly  
coaching tools. Hit/it data deemed essential to  
boost predictive accuracy. External generalizability 
remains untested beyond single academy. 

(Razali et al., 
2017) 

Selection  
Support & 
Team  
Formation 

Prediction of most suitable 
playing position (10 outfield 
roles: sweeper, backs,  
midfielders, wingers,  
forwards; GK excluded) 
based on physical, mental, 
and technical ratings. 

Bayesian Networks: 99% accuracy;  
Decision Tree: 98%; KNN: 97%. 

Framework combined coach-rated  
attributes (1–10 scale across physical, 
mental, technical skills) with ML clas-
sifiers. Developed a Football Talent 
Identification Site for practical  
deployment. Expert evaluation (20 
coaches/managers) confirmed ease of 
use and relevance. 

Authors conclude ML classifiers can assign players 
to their optimal positions with very high accuracy, 
reducing subjective bias in coach decisions.  
Prototype system was well-received (75–80% 
strongly agreed on usability, suitability).  
Limitations: small single-school dataset, manual 
skill ratings subjective, no external validation. 

(Woods et 
al., 2018b) 

Team  
Formation & 
Position 
 Classification 

Classification of elite junior 
Australian football players 
(U18) into 4 playing posi-
tions (defender, forward, 
midfield, ruck) based on 12 
technical skill indicators 
from national champion-
ships. 

LDA: 56.8% accuracy (errors: midfielders 
19.6% → rucks 75%). Random Forest: 
51.6% accuracy (errors: midfielders  
27.8% → rucks 100%). PART decision 
list: 70.1% accuracy (errors: midfielders 
14.4% → rucks 100%). 

Rule induction (PART) generated  
6 classification rules, mainly  
leveraging disposals, contested/ 
uncontested possessions, kicks, and  
inside 50s. Showed defenders and  
forwards overlapped heavily;  
midfielders most distinct; rucks poorly 
classified due to small sample. 

Authors conclude that existing commercial technical 
indicators provide limited discriminatory power for 
position classification, with high homogeneity 
across roles. PART offered relatively better accuracy 
but overfitting risk noted. Practical implication:  
recruiters should use more position-specific  
technical indicators and design competitions/training 
environments that allow players to demonstrate  
role-specific attributes. Reliance solely on standard 
technical stats may obscure positional differences 
and complicate objective recruitment. 

GK = Goalkeeper; κ = Cohen’s Kappa (agreement statistic); LDA = Linear Discriminant Analysis; LMT = Logistic Model Tree; MLP = Multilayer Perceptron; PART = Partial Decision List (rule-based classifier); RF = Random 
Forest; SMO = Sequential Minimal Optimization; SimpleCART = Classification and Regression Tree (simplified); U13/U18 = Under-13 / Under-18 age category.  
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Table 6. Main results of the individual studies on multiple objectives. 

Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions 

(de Almeida-
Neto et al., 
2023) 

Orientation & 
Selection  
Support 

Predicted similarity between  
morphological + neuromuscular profiles 
of youth in Sport Initiation (SI) vs. 
young athletes in six sports (soccer, 
swimming, tennis, volleyball, 
rowing, BJJ). 

Reliability of MLP models reported  
at 87%. Similarity scores: SI → Soccer 
88%, Swimming 79%, BJJ 77%,  
Tennis 70% (combined analysis).  
No significant similarity for Rowing. 

Demonstrated how MLPs can  
integrate morphological +  
neuromuscular + biological  
maturation factors. Highlighted BM 
as a major confounder influencing 
neuromuscular strength and  
morphology. Suggested that MLPs 
can reduce selection errors by  
combining multiple domains. 

Authors conclude MLPs are effective 
tools to guide orientation of SI youth 
into sports matching their 
physical/neuromuscular profiles,  
reducing misallocation risk. Stress 
need to consider biological maturation 
in TID. Limitations: cross-sectional, 
small sample (N=75), no longitudinal 
follow-up, non-elite athletes. 

(Contreras-
García et al., 
2024) 

Development / 
Specialization 
Analysis 

Classification of shooting zones  
and detection of outlier patterns 
to identify early specialization vs.  
versatility in U14 basketball players 
compared with professional players. 

KNN model classification of shots 
reached 99.6% accuracy  
(professionals as reference).  
Outlier analysis: 97.7% of U14  
players vs. 64.7% of professionals 
showed extreme FGA% patterns.  
Versatility: U14 2.3% vs.  
Professionals 35.4%. 

Machine learning cluster analysis 
identified 8 shooting zones;  
combined with outlier detection, 
yielded 7 role categories. Revealed 
U14 lacked versatility and 3-point 
shooting ability, often over- 
specializing in 2–4 midrange zones. 
Professionals characterized by either 
versatile players or one-zone  
specialists. 

Authors conclude U14 basketball 
players show premature specialization 
patterns not aligned with professional 
demands. Recommend formative 
training to enhance shooting versatility 
or to cultivate one-zone specialist 
roles deliberately. Findings raise  
concerns that current youth competi-
tions may prioritize short-term success 
over long-term player development. 

(Ge, 2024) 

Performance 
Assessment & 
Training  
Support 

Quantitative classification of  
youth basketball players’ physical  
fitness (excellent, good, pass, fail)  
using CNN-AE-MG model. 

CNN-AE-MG achieved mAP = 
89.12%, assessment accuracy =  
97.5%. Male subgroup prediction 
100% accurate (20/20 correct),  
female subgroup 95%  
(19/20 correct). 

Combination of CNN + Autoencoder 
enabled unsupervised feature learn-
ing, reducing feature loss. Gaussian 
Mixture with EM algorithm  
improved classification reliability. 
Identified endurance (1000m/800m), 
lung capacity, grip strength as weak 
areas in youth players. 

Authors conclude the CNN-AE-MG 
model provides accurate, dynamic  
assessment of youth basketball  
players’ physical health, superior to 
baseline models. Proposed use for  
exercise prescription personalization, 
training program adjustment, and  
talent selection support. Limitations: 
single-country, limited external  
validation, general fitness focus rather 
than sport-specific outcomes. 

AE = Autoencoder; AFL = Australian Football League; APHV = Age at Peak Height Velocity; BJJ = Brazilian Jiu-Jitsu; BM = Body Mass; CNN = Convolutional Neural Network; CNN-AE-MG = Convolutional Neural 
Network – Autoencoder – Mixture Gaussian model; CI = Conditional Inference; DA = Discriminant Analysis; EM = Expectation–Maximization; F1 = F1-score (harmonic mean of precision and recall); FGA% = Field Goal 
Attempt Percentage; Hb = Hemoglobin; HR = Heart Rate; IGF-1 = Insulin-like Growth Factor 1; KNN = K-Nearest Neighbors; Lasso = Least Absolute Shrinkage and Selection Operator regression; LR = Logistic Regression; 
MLP = Multilayer Perceptron; nI-WAVE = Nonlinear Importance-Weighted Autoencoding Variational Inference with normalizing flow priors; NRL = National Rugby League; PCA = Principal Component Analysis; PCDEQ 
= Psychological Characteristics of Developing Excellence Questionnaire; PHV = Peak Height Velocity; RF = Random Forest; ROC AUC = Receiver Operating Characteristic – Area Under the Curve; SHAP = SHapley 
Additive exPlanations; SI = Sport Initiation; U20 = Under-20 age category; U12/U14/U18 = Under-12 / Under-14 / Under-18 age categories; YODA = Youth Online Diagnostic Assessment; YUVA-SQ = Youth Universal 
Value Assessment – Scouting Questionnaire. 
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Table 6. Continue… 

Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions 

(Gogos et al., 
2020) 

Selection  
Prediction & 
Career  
Outcome  
Forecasting 

Career outcomes of AFL  
draftees (matches played,  
mean AFL Player Rating, 
mean AFL Player Ranking). 

Draft combine alone explained  
<3–4% of variance in career outcomes. 
Adding draft order & playing position 
improved variance explained slightly 
(up to 6%). Individual combine tests 
explained <2% variance. 

Boosted trees showed player position 
(>35% relative importance) and draft  
order (>25%) far outweighed combine 
results (<10%). Key forwards showed no 
clear relation between draft position and 
in-game performance; midfielders/rucks 
showed positive relation. Evidence of 
loss aversion bias: early draftees played 
more games irrespective of performance. 

Authors conclude AFL Draft Combine 
tests are poor predictors of long-term  
career outcomes. Draft position and  
playing position provide small additional 
explanatory power. Suggests physical test 
batteries are insufficient for TID and 
should be complemented by in-game skill, 
decision-making, and contextual factors. 
Highlights systemic biases (early draft  
order → more opportunities). 

(Kelly et al., 
2022) 

Talent  
Development 

(a) Player review ratings  
(U9–U16, n=98); (b) Selection  
to professional contract (U18, 
n=18). Both based on ~53  
variables across four domains 
(technical/tactical, physical,  
psychological, social). 

Study 1: 15/53 features had non-zero 
coefficients; strongest = % predicted 
adult height (0.196), lob pass (0.160), 
dribble completion (0.124), total 
match-play hours (0.145), older  
relative age. Study 2: strongest predic-
tors of professional contract = PCDEQ 
Factor 3 (coping with pressures), 
PCDEQ Factor 4 (ability to organise 
quality practice), plus progression  
ratings, slalom dribble,  
lower home SES. 

Lasso regression identified holistic,  
non-linear predictors across all FCM  
domains. Key insight: psychological  
factors (esp. coping with pressure, 
organization) emerged as strongest  
contributors to contract attainment, not 
just technical/physical. Also highlights 
relative age bias and importance of 
match-play opportunities. 

Authors conclude that youth development 
is multifactorial and dynamic. Success not 
solely determined by technical/tactical 
ability; psychological resilience and self-
organization are critical. Early maturation, 
relative age, and cumulative match-play 
also drive coaches’ evaluations. Findings 
support bio-banding and greater invest-
ment in psychological development within 
academies. Limitations: small samples 
(esp. Study 2), retrospective data,  
exploratory nature of ML. 

(Kilian et al., 
2023) 

Profiling /  
Latent  
Structure  
Analysis 

Identification of latent factors 
underlying multidimensional  
assessments (technical, tactical, 
physical, anthropometric,  
psychosocial). 

Not predictive classification; evaluated 
model fit and factor interpretability. 
nI-WAVE outperformed PCA with 
clearer separation, fewer cross-load-
ings. 

Four interpretable latent factors:  
(1) Subjective coach evaluations, 
(2) Anthropometric/age-related (incl. 
sprint), (3) Technical skills (dribbling, 
ball control, juggling), (4) Speed/agility. 
nI-WAVE showed superior  
interpretability and factor structure  
stability. 

Authors conclude that deep learning factor 
models (nI-WAVE) provide better latent 
structure recovery than PCA, improving 
interpretability of multidimensional TID 
data. Highlight importance of large-scale 
datasets in advancing ML-based profiling. 
Limitations: requires large data, anchors 
affect loadings, only U12 German cohort 
examined. 

AE = Autoencoder; AFL = Australian Football League; APHV = Age at Peak Height Velocity; BJJ = Brazilian Jiu-Jitsu; BM = Body Mass; CNN = Convolutional Neural Network; CNN-AE-MG = Convolutional Neural 
Network – Autoencoder – Mixture Gaussian model; CI = Conditional Inference; DA = Discriminant Analysis; EM = Expectation–Maximization; F1 = F1-score (harmonic mean of precision and recall); FGA% = Field Goal 
Attempt Percentage; Hb = Hemoglobin; HR = Heart Rate; IGF-1 = Insulin-like Growth Factor 1; KNN = K-Nearest Neighbors; Lasso = Least Absolute Shrinkage and Selection Operator regression; LR = Logistic Regression; 
MLP = Multilayer Perceptron; nI-WAVE = Nonlinear Importance-Weighted Autoencoding Variational Inference with normalizing flow priors; NRL = National Rugby League; PCA = Principal Component Analysis; PCDEQ 
= Psychological Characteristics of Developing Excellence Questionnaire; PHV = Peak Height Velocity; RF = Random Forest; ROC AUC = Receiver Operating Characteristic – Area Under the Curve; SHAP = SHapley 
Additive exPlanations; SI = Sport Initiation; U20 = Under-20 age category; U12/U14/U18 = Under-12 / Under-14 / Under-18 age categories; YODA = Youth Online Diagnostic Assessment; YUVA-SQ = Youth Universal 
Value Assessment – Scouting Questionnaire. 
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Table 6. Continue… 

Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions 

(López-De-
Armentia, 
2024) 

Scouting  
Support &  
Talent  
Detection 

Detection of potential women’s 
football talents across ~30 
leagues using automated data 
collection (Soccerdonna) +  
alert system. 

No accuracy metrics (non-ML 
predictive model). Evaluation: 
Usefulness 4–5/5; Ease of use  
4–5/5; all experts agreed alerts 
were effective and tool improved 
efficiency. 

Tool integrates basic player data  
(demographics, position, minutes,  
contract expiry, market value, injuries) 
with automatic alert generation (e.g., 
U20 players with 1000 min, >5 goals, or  
consistent starts). Dashboards allow  
filtering/searching ~12,000 players. 

Authors conclude WTDTool increases  
efficiency and coverage in scouting women’s 
football, particularly for clubs with limited 
resources. Experts confirmed ease  
of use and usefulness. Limitations: women’s 
data coverage incomplete (contract and market 
data available for only ~25% of players); no 
predictive analytics yet. Future: add anomaly 
detection and integrate multiple data sources. 

(Retzepis et 
al., 2024) 

Maturation 
Prediction 

Classification of athletes with 
predicted PHV ≤ median vs. > 
median age, using  
anthropometric, body  
composition, and strength 
measures. 

LR achieved 96.67% accuracy, 
98% recall, 96.33% precision, 
97.09% F1-score, ROC AUC  
99%. RF and NN slightly lower 
(94–96%). 

SHAP (explainable AI) revealed key  
predictors: sitting height, weight, height, 
body fat, left & right handgrip strength,  
father’s height. Sitting height and weight 
most influential (higher values → PHV 
> median). Body fat higher predicted  
PHV ≤ median. 

Study concludes explainable ML can  
accurately predict PHV timing in 11-year-old 
athletes. Key growth and strength  
indicators (esp. sitting height, weight, grip 
strength) discriminate maturity status.  
Findings help avoid misclassification of early 
maturers as “talents” and support better talent 
ID, injury prevention, and training load  
management. Recommends longitudinal  
validation to confirm predictive power and  
extend to other sports and female athletes. 

(Venkata-
raman et al., 
2024) 

Scouting  
Support & 
Cognitive  
Profiling 

Player suitability for selection 
and development, integrating 
psychometric (YODA) and 
coach-based evaluations into a 
standardized scouting  
framework (YUVA-SQ). 

Not accuracy-based: case  
demonstration. YODA generated 
trait/personality plots for  
individual players, producing  
actionable insights for coaches. 
Validated by expert use and player 
development outcomes. 

YODA psychometric tool provided  
granular insights into players’ cognitive 
profile (e.g., coachability, team  
orientation, game knowledge, analytical 
style). Combined with coach technical 
ratings and trial performance for contin-
uous monitoring. 

Authors conclude YUVA-SQ offers a  
holistic, standardized scouting framework 
blending cognitive/behavioral assessment with 
technical/physical evaluation. Demonstrated 
utility in restructuring a university football 
team. Proposed extension to  
grassroots talent scouting in India, aligning 
with AIFF “Vision 2047.” Limitations:  
descriptive case study only, no predictive  
performance metrics, no large-scale validation. 

AE = Autoencoder; AFL = Australian Football League; APHV = Age at Peak Height Velocity; BJJ = Brazilian Jiu-Jitsu; BM = Body Mass; CNN = Convolutional Neural Network; CNN-AE-MG = Convolutional Neural 
Network – Autoencoder – Mixture Gaussian model; CI = Conditional Inference; DA = Discriminant Analysis; EM = Expectation–Maximization; F1 = F1-score (harmonic mean of precision and recall); FGA% = Field Goal 
Attempt Percentage; Hb = Hemoglobin; HR = Heart Rate; IGF-1 = Insulin-like Growth Factor 1; KNN = K-Nearest Neighbors; Lasso = Least Absolute Shrinkage and Selection Operator regression; LR = Logistic Regression; 
MLP = Multilayer Perceptron; nI-WAVE = Nonlinear Importance-Weighted Autoencoding Variational Inference with normalizing flow priors; NRL = National Rugby League; PCA = Principal Component Analysis; PCDEQ 
= Psychological Characteristics of Developing Excellence Questionnaire; PHV = Peak Height Velocity; RF = Random Forest; ROC AUC = Receiver Operating Characteristic – Area Under the Curve; SHAP = SHapley 
Additive exPlanations; SI = Sport Initiation; U20 = Under-20 age category; U12/U14/U18 = Under-12 / Under-14 / Under-18 age categories; YODA = Youth Online Diagnostic Assessment; YUVA-SQ = Youth Universal 
Value Assessment – Scouting Questionnaire. 
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       Table 6. Continue… 

Study General Aim Outcomes Predicted Key Performance Metrics Interpretability / Key Insights Main Results & Conclusions 

(Woods et 
al., 2018a) 

Talent Devel-
opment & 
Competition 
Comparison 

Classification of competition 
level (elite youth U20 vs. senior 
NRL) using 12 team  
performance indicators  
(runs, tackles, missed tackles, 
kicks, etc.). 

CI classification tree  
correctly classified 79% of 
U20 and 93% of NRL 
games. 

Key discriminators: ‘all runs’, ‘tackles’, 
‘tackle breaks’, ‘missed tackles’, ‘kicks’. 
NRL games = more runs and tackles, 
fewer missed tackles. U20 = higher tackle 
breaks, more errors. 

Authors conclude that NRL and U20 competitions 
show distinct gameplay profiles. U20 players  
entering NRL may lack exposure to required  
tackling capacity and physicality. Coaches should 
focus on tackling ability and physical development 
in U20s. Suggests “bridging” via State League  
participation to aid transition. Practical implication: 
training interventions should aim to align youth 
gameplay with senior competition demands. 

(Zhao et al., 
2019) 

Talent  
Identification 
& Sport- 
Specific 
Profiling 

Classification of U15–U16 male 
athletes (basketball, fencing, 
judo, swimming, table tennis, 
volleyball) into their respective 
sport based on 25 tests (18  
anthropometric, 5 physiological, 
2 motor). 

DA: 71.3% correct  
classification (original: 
98.9%). Best: fencing 85%, 
volleyball 72.7%. Worst: 
basketball 57.1%. MLP: 
71.0% correct classification 
(original: 99.3%). Best:  
volleyball 83.4%, table 
tennis 83.3%. Worst:  
basketball 20%. 

Key discriminators: Anthropometry 
(height, shoulder width, crista width, 
Achilles tendon length), Motor (back 
strength, reaction time), Physiological  
(vital capacity, hemoglobin mass, resting 
HR). Volleyball = tall stature, strength, 
high lung capacity. Judo = strength, chest 
girth, Hb mass. Swimming = lung 
capacity, tendon length. Fencing = smaller 
chest/shoulder width. Table tennis = short 
lower leg length + strong back. 

Authors conclude that generic test batteries of  
anthropometric, physiological, and motor measures 
can differentiate youth athletes by sport with ~70% 
accuracy, comparable to European studies. Findings 
confirm discriminative value of body size, strength, 
and aerobic capacity in talent ID. Basketball was 
hardest to classify due to small sample size.  
Implication: test batteries are useful for broad sport 
allocation, but need more sport-specific, larger-scale 
validation. 

AE = Autoencoder; AFL = Australian Football League; APHV = Age at Peak Height Velocity; BJJ = Brazilian Jiu-Jitsu; BM = Body Mass; CNN = Convolutional Neural Network; CNN-AE-MG = Convolutional Neural 
Network – Autoencoder – Mixture Gaussian model; CI = Conditional Inference; DA = Discriminant Analysis; EM = Expectation–Maximization; F1 = F1-score (harmonic mean of precision and recall); FGA% = Field Goal 
Attempt Percentage; Hb = Hemoglobin; HR = Heart Rate; IGF-1 = Insulin-like Growth Factor 1; KNN = K-Nearest Neighbors; Lasso = Least Absolute Shrinkage and Selection Operator regression; LR = Logistic Regression; 
MLP = Multilayer Perceptron; nI-WAVE = Nonlinear Importance-Weighted Autoencoding Variational Inference with normalizing flow priors; NRL = National Rugby League; PCA = Principal Component Analysis; PCDEQ 
= Psychological Characteristics of Developing Excellence Questionnaire; PHV = Peak Height Velocity; RF = Random Forest; ROC AUC = Receiver Operating Characteristic – Area Under the Curve; SHAP = SHapley Additive 
exPlanations; SI = Sport Initiation; U20 = Under-20 age category; U12/U14/U18 = Under-12 / Under-14 / Under-18 age categories; YODA = Youth Online Diagnostic Assessment; YUVA-SQ = Youth Universal Value 
Assessment – Scouting Questionnaire. 
 

Discussion 
 
This systematic review synthesized evidence on the application of ML methods in sport 
TID and development. Across the included studies, ML was employed for diverse pur-
poses, ranging from predicting selection and performance outcomes to supporting team 
formation, profiling, maturation assessment, and scouting. The findings highlight the chal-
lenges of applying ML in this domain: on one hand, advanced algorithms can capture 
complex, multidimensional patterns that traditional statistical approaches may overlook; 
on the other, the heterogeneity of data types, small sample sizes, and lack of external val-
idation continue to limit their translational value. 

 
This capacity to model multidimensional structure aligns closely with the ecologi-

cal dynamics view of talent development, in which performance emerges from interaction-
dominant rather than variable-dominant processes. ML’s real strength lies not merely in 
detecting correlations among isolated predictors but in uncovering higher-order patterns 
that emerge from the interaction of biological, psychological, and environmental con-
straints (Reis et al., 2024). Accordingly, future research should prioritize feature sets and 
modeling approaches that represent these interdependent relationships - such as contex-
tual, temporal, and relational variables - thereby aligning computational design with the 
ecological nature of athlete development. 
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Selection prediction 
The synthesis of selection-focused studies demonstrates 
that ML models can capture important physical, technical, 
psychological, and socio-cultural factors associated with 
advancement or deselection in talent pathways. Models 
such as XGBoost, neural networks, and one-class SVMs 
achieved moderate to high predictive validity in academy 
soccer (Jauhiainen et al., 2019; Jennings et al., 2024; Alt-
mann et al., 2024), while decision trees and hybrid deep 
learning architectures produced high accuracy in school-
based settings  (Theagarajan and Bhanu, 2021; Abidin and 
Erdem, 2025). Several studies emphasized that physical 
and skill-related variables (e.g., sprinting ability, counter-
movement jump, ball control) remain consistently influen-
tial in selection decisions, while psychological characteris-
tics such as coping under pressure and emotional regulation 
also emerged as critical predictors (Owen et al., 2022; 
Kelly et al., 2022). Importantly, socio-cultural and relative 
age effects were shown to influence outcomes, underscor-
ing that selection is not solely determined by athletic per-
formance (Craig and Swinton, 2021; Brown et al., 2024). 

Nevertheless, these studies highlight important lim-
itations. Predictive accuracies often fell below thresholds 
typically required for decision-making in practice (e.g., 
AUC < 0.70, (Altmann et al., 2024)), while external vali-
dation was rare, raising concerns about generalizability 
across sports, contexts, and samples. This pattern under-
scores a crucial conceptual distinction between apparent 
validity - performance measured within the development 
sample - and transportable validity, which reflects how 
well a model generalizes to independent, real-world con-
texts. For example, a model predicting academy selection 
may achieve high internal accuracy (AUC ≈ 0.85) through 
resampling or cross-validation, yet when applied to a dif-
ferent club, season, or cohort, its performance may degrade 
to AUC ≈ 0.65. Such declines are not merely statistical ar-
tifacts but manifestations of the context-bound, dynamic 
nature of athlete development, where the distribution of 
constraints and opportunities shifts across settings. Recog-
nizing this difference reinforces that external validation is 
not only a methodological requirement but a theoretical test 
of whether the modeled relationships capture genuine de-
velopmental regularities rather than local sampling pat-
terns. 

Many models also relied too much on physical test 
data, which limits interpretability when predicting long-
term success within already selected elite groups (Craig 
and Swinton, 2021). Small sample sizes and imbalance be-
tween selected and deselected athletes further restrict 
model robustness (Jauhiainen et al., 2019). These findings 
emphasize that ML should not replace expert judgment but 
instead complement existing scouting frameworks. 

Moreover, the dominance of soccer-based studies 
likely shapes the implicit model priors in this field, since 
features that are salient in invasion games (e.g., intermit-
tent high-speed running, rapid change of direction, spatial–
temporal awareness, and transition behaviors) are 
overrepresented in training data and outcome labels.          
As a result, ML models - and the feature-engineering       
conventions  they  normalize -  may capture sport-specific 

 
regularities that do not readily transfer to sports with dif-
ferent task dynamics. This concentration can narrow eco-
logical validity, as the performer–environment couplings 
and constraint sets underpinning soccer differ from those 
governing performance in sports such as volleyball. Ex-
panding the evidence base beyond invasion games and en-
couraging cross-sport external validation would therefore 
strengthen the domain generalizability of ML applications 
in TID. 
 
Performance prediction 
Studies applying ML to performance prediction showed 
promising results in linking physiological and technical 
markers with skill-based and in-game outcomes. Early 
work (Cornforth et al., 2015) demonstrated that heart rate 
variability and environmental data could moderately pre-
dict match loads in Australian football. More recent studies 
(Duncan et al., 2024; Sandamal et al., 2024) expanded to 
youth skill assessment, where ML algorithms predicted 
soccer dribbling ability and test-based fitness with high ac-
curacy when including multidimensional features such as 
fundamental motor skills, anthropometry, and hormonal 
profiles. Random Forest and XGBoost emerged as strong 
performers, offering predictive power and capturing non-
linear relationships in volleyball performance from anthro-
pometric data (Sanjaykumar et al., 2024). 

Despite these advances, performance prediction 
studies also exhibit challenges. The use of laboratory or 
field-test performance outcomes raises questions about 
ecological validity for predicting actual match perfor-
mance. Furthermore, over-reliance on physiological data 
may neglect tactical, cognitive, and psychosocial contribu-
tors to performance. While explainable ML techniques 
provide interesting information into feature importance, 
few studies validated whether these insights align with 
real-world coaching expertise. To enhance translation, fu-
ture work should integrate multimodal data sources and 
conduct prospective validation in competitive environ-
ments. 
 
Team formation & position classification 
The reviewed studies demonstrate that ML can approxi-
mate and in some cases outperform coach-derived deci-
sions regarding position classification and team formation. 
For example, Random Forest and Multilayer Perceptrons 
achieved >90% accuracy in predicting player positions and 
generating lineups closely resembling coaches’ choices in 
youth soccer (Abidin, 2021). Bayesian and tree-based 
models also assigned players to suitable positions with 
very high accuracy when using multidimensional skill rat-
ings (Razali et al., 2017). Even when accuracy was lower, 
as in Australian football positional classification (Woods 
et al., 2018b), ML revealed meaningful patterns, such as 
the overlap between defenders and forwards, or the distinc-
tiveness of midfielders. 

However, most models were trained on small or 
academy-level datasets, limiting their generalizability 
across contexts. For instance in Australian football study 
(Woods et al., 2018b), poor classification of rucks high-
lighted that some roles remain underrepresented or difficult 
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to capture with standard performance indicators. External 
or longitudinal validation of team formation models is vir-
tually absent, and practical adoption will require integra-
tion with real-time data streams rather than retrospective or 
synthetic datasets. Thus, while ML shows strong potential 
in complementing coaching decisions, its utility remains 
contingent on larger, multi-sample validation and the in-
clusion of richer, role-specific features. 
 
Profiling, development, scouting & maturation 
Studies beyond direct selection and performance predic-
tion illustrate the expanding scope of ML in talent identifi-
cation and development. Morphological and neuromuscu-
lar profiling models showed value for orienting youth into 
appropriate sports (de Almeida-Neto et al., 2023), while 
cluster and outlier analyses revealed concerning early spe-
cialization patterns in basketball compared with profes-
sional norms (Contreras-García et al., 2024). Deep learning 
models integrating autoencoders and Gaussian mixtures 
provided accurate classification of youth fitness levels (Ge, 
2024), while explainable ML approaches accurately pre-
dicted biological maturation status (Retzepis et al., 2024). 
Studies on scouting systems in women’s and men’s foot-
ball  (Venkataraman et al., 2024; López-De-Armentia, 
2024) highlight the growing use of ML and automated data 
collection in expanding recruitment pipelines, particularly 
where resources are scarce. These findings underline ML’s 
versatility in supporting orientation, development monitor-
ing, and scouting beyond narrow predictive tasks. 

Nevertheless, several limitations constrain the 
translation of these broader applications. Many studies re-
main proof-of-concept, conducted with small or single-in-
stitution datasets (de Almeida-Neto et al., 2023; Retzepis 
et al., 2024), or descriptive case studies without predictive 
validation (Venkataraman et al., 2024). External generali-
zability is especially limited where region-specific envi-
ronmental effects or sample-specific datasets dominate 
(Sandamal et al., 2024; Contreras-García et al., 2024).  
 
Limitations on ML reporting 
Across the included studies, the analysis domain emerged 
as the most frequent source of high risk of bias, primarily 
due to small samples, reliance on internal validation, or use 
of synthetic/augmented data without adequate safeguards 
against optimism. For example, a study (Abidin, 2021) re-
lied on only 21 real players supplemented with synthetic 
augmentation, producing very high accuracies but at the 
expense of validity. Similarly, another study (Abidin and 
Erdem, 2025) reported accuracies above 97% but did so 
without external validation and with imbalanced data, leav-
ing open the possibility of overfitting. Even in larger, bet-
ter-resourced settings (Altmann et al., 2024), while partic-
ipants and predictors were appropriately defined, the lack 
of calibration and external testing led to an overall “un-
clear” rating in the analysis domain. These aspects suggest 
that although predictive modeling is advancing in youth 
TID research, methodological rigor in handling imbalance, 
avoiding leakage, and validating models externally is still 
uncommon. 

A second recurrent issue relates to applicability of 
predictors and outcomes, especially where subjective or    

indirect measures were used. For instance, studies using 
coach-rated assessments as input variables (Abidin, 2021; 
Abidin and Erdem, 2025) faced concerns that these subjec- 
tive scores could embed bias or even overlap with the out-
come being predicted. Other study (de Almeida-Neto et al., 
2023) used cross-sport orientation outcomes rather than 
within-sport selection, which limited the direct applicabil-
ity of their findings to talent identification in team sports. 
In contrast, where predictors were standardized and out-
comes were objectively defined (Craig and Swinton, 
2021), the risk of bias was lower, even if model perfor-
mance was weak. Overall, most included studies were 
judged at least “some concern” for applicability, under-
scoring that future work should prioritize transparent, ob-
jective measures aligned closely with actual selection or 
progression outcomes. 
 
Limitations of this systematic review, future research 
and practical applications 
This review has limitations that should be acknowledged. 
Despite a comprehensive search and systematic screening 
process, it is possible that relevant studies were missed, 
particularly those published in grey literature (e.g., tech-
nical reports, theses). The exclusion of grey literature was 
a deliberate methodological choice to maintain peer-re-
viewed quality standards; however, it introduces the possi-
bility of publication bias, as studies reporting weaker or 
non-significant results are less likely to appear in indexed 
journals. Consequently, the synthesized evidence may 
overrepresent positive findings and potentially overesti-
mate ML model performance. This limitation may be im-
portant, as it reflects a broader tendency within data-driven 
research toward selective visibility of success - a phenom-
enon that underscores the need for greater transparency, 
data sharing, and preregistration in ML-based sports sci-
ence. Moreover, the heterogeneity of sports, outcome 
measures, and machine learning approaches precluded 
meta-analysis and restricted the synthesis to a structured 
narrative. The reliance on published results also meant that 
incomplete reporting of performance metrics or validation 
methods could not be clarified or supplemented, further 
limiting interpretability. Finally, as many included studies 
were exploratory, single-sample, or lacked external valida-
tion, the evidence base summarized here represents an 
emerging rather than mature field. 

Interpretability emerged as one of the least consist-
ently addressed dimensions across studies, yet it represents 
a continuum of conceptual transparency rather than a bi-
nary property. At the most basic level, interpretability can 
involve global feature importance or coefficient-based 
rankings that indicate which variables most influence pre-
dictions. More advanced methods, such as SHAP (SHapley 
Additive Explanations) or LIME (Local Interpretable 
Model-Agnostic Explanations), allow for instance-level at-
tribution, showing how specific inputs contribute to indi-
vidual outcomes. At the highest tier, counterfactual reason-
ing provides actionable insight by simulating how changes 
in certain features might alter selection probabilities or de-
velopmental trajectories. Viewing interpretability hierar-
chically underscores that transparency in ML is scalable—
from descriptive feature inspection to causal exploration—
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and that its depth should align with the practical stakes of 
decision-making in TID. 

Looking ahead, future research should prioritize 
larger, longitudinal, and multi-sport datasets that allow for 
robust model development and both statistical and ecolog-
ical external validation. In addition to conventional hold-
out or cross-cohort testing, ecological external validation 
involves evaluating model performance across different 
clubs, regions, and competition levels to ensure contextual 
robustness and ecological realism. Such cross-setting vali-
dation helps determine whether predictive patterns reflect 
genuine developmental principles or context-specific arti-
facts, bridging methodological rigor with the complex, 
adaptive nature of sport environments. Standardized re-
porting of ML pipelines - including feature engineering, 
calibration assessment, validation strategies, and interpret-
ability methods - would improve transparency and compa-
rability across studies. Greater integration of multidimen-
sional data is also needed to capture the complexity of tal-
ent development. Moreover, collaboration between sport 
scientists, data scientists, and practitioners will be essential 
to ensure that models are not only accurate but also inter-
pretable, ethically sound, and practically relevant. By em-
bracing open science practices and methodological rigor, 
the field can move beyond optimism bias toward a more 
cumulative, self-correcting body of evidence that meaning-
fully informs talent identification and development sys-
tems. 

To enhance reproducibility and comparability, fu-
ture ML studies in talent identification should adopt, at 
minimum, clearly describe their data partitioning strategy, 
including whether splits were performed at the athlete or 
trial level; outline steps for leakage control to prevent in-
formation overlap between training and testing sets; report 
how class imbalance was handled within validation folds; 
and include both discrimination and calibration metrics 
(e.g., AUC, Brier score, calibration slope). In addition, 
transparency around fairness auditing - such as assessing 
model performance across relative-age quartiles, sex, or 
maturation status - will improve interpretability and ethical 
accountability. Consistent reporting of these elements 
would substantially strengthen the methodological quality, 
transparency, and applied trustworthiness of ML research 
in youth talent identification. 

To promote equitable predictions across subpopula-
tions, we propose a minimal fairness framework specifying 
main covariates that should be recorded, modeled, and au-
dited in youth TID, as exemples, birth quarter/relative age, 
biological maturation status (e.g., PHV indicators), and so-
cio-economic background (e.g., school type or deprivation 
index), alongside sex and playing context (e.g., region/club 
resource level). These variables should be (i) pre-specified 
in protocols, (ii) considered as features or stratification fac-
tors where appropriate, and (iii) subjected to subgroup and 
intersectional audits reporting discrimination, calibration, 
and error-rate parity at a stated operating point. If dispari-
ties are detected, studies should apply bias-mitigation pro-
cedures (e.g., reweighting, stratified sampling, threshold 
adjustment, post-hoc recalibration) and re-report subgroup 
metrics. 

From a practical standpoint, the findings of this re-
view suggest that ML may have potential to complement, 
rather than replace, traditional talent identification and de-
velopment practices. Current evidence indicates that ML 
models can highlight patterns across large, multidimen-
sional datasets and may assist coaches and scouts in refin-
ing their decisions or monitoring athlete development. 
However, given the frequent limitations of small sample 
sizes, context-specific data, and limited external validation, 
these tools should be viewed as exploratory decision-sup-
port aids rather than definitive selection instruments. Prac-
titioners are advised to use ML outputs in conjunction with 
expert judgment, holistic evaluation of athletes, and aware-
ness of potential biases (e.g., relative age, socio-cultural in-
fluences). This complementary role can be understood 
along two interconnected pathways, namely an operational 
pathway, in which ML assists practitioners with data-
driven screening, workload monitoring, and early flagging 
of developmental trends to enhance decision efficiency, 
and a discovery pathway, where ML identifies novel, inter-
action-based patterns among physical, technical, and psy-
chosocial constraints that can inform longitudinal experi-
mentation and theory development. These pathways illus-
trate that the value of ML lies not in replacing human ex-
pertise but in augmenting it - bridging empirical discovery 
with applied decision-making in youth talent systems. 
Careful integration in practice may enhance efficiency and 
provide additional perspectives, but overreliance on unval-
idated models risks reinforcing existing inequalities or pro-
ducing misleading conclusions. 

To operationalize these findings, practitioners could 
adopt tiered decision protocols in which ML models are 
first used for broad early screening - prioritizing high sen-
sitivity to avoid missing potential talent - followed by 
structured expert evaluation emphasizing context, adapta-
bility, and psychosocial maturity. Such hybrid frameworks 
can combine algorithmic efficiency with human interpre-
tive depth, ensuring that automated outputs inform but do 
not dictate selection. In this way, ML functions as an evi-
dence-based triage tool that supports individualized moni-
toring, facilitates ongoing re-evaluation, and helps direct 
coaching resources toward athletes with emerging poten-
tial rather than early advantage. 

From a practitioner perspective, the implementation 
of ML in TID can also be conceptualized as a sequential 
decision pathway encompassing model development, vali-
dation, deployment, and monitoring. During development, 
multidisciplinary teams should ensure data representative-
ness, apply rigorous leakage control, and use nested cross-
validation to optimize model tuning. Validation should 
progress from internal to independent external testing to 
evaluate transportability and calibration before any opera-
tional use. In deployment, ML outputs should serve as de-
cision-support tools within structured selection frame-
works - for instance, as high-sensitivity screening aids that 
prompt subsequent expert evaluation. Finally, ongoing 
monitoring is essential to detect model drift, reassess fair-
ness across athlete subgroups, and recalibrate performance 
metrics as data and populations evolve. This cyclical pro-
cess ensures that ML models remain methodologically 
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sound, contextually relevant, and ethically aligned with the 
developmental principles of youth sport. 

 
Conclusion 
 
This systematic review found that research applying ML in 
sport talent identification remains limited in scope but ex-
panding. The majority of available studies focused on se-
lection prediction tasks, particularly in soccer and other 
team sports, where algorithms were used to forecast admis-
sion, progression, or draft success. A smaller but growing 
body of work addressed performance prediction, leverag-
ing physiological, anthropometric, or cognitive markers to 
estimate test results or in-game performance. Fewer studies 
explored team formation and positional classification, and 
an emerging set of contributions examined broader appli-
cations such as profiling, maturation, and scouting support. 
Across domains, Random Forest, gradient boosting meth-
ods, and neural networks were the most frequently applied, 
often achieving moderate to high internal accuracy. How-
ever, very few studies provided external validation, and 
most were conducted on relatively small, single-sport or 
academy-specific datasets, limiting generalizability. 

The findings suggest that while ML offers clear po-
tential to enrich talent identification and development sys-
tems, its current role should be viewed as exploratory and 
complementary rather than decisive. The predominance of 
selection-focused studies highlights a narrow evidence 
base, with underrepresentation of longitudinal designs, fe-
male athletes, and diverse sporting contexts. Moreover, in-
terpretability methods - although increasingly adopted - re-
main inconsistently applied, and socio-cultural or psycho-
logical factors are still less frequently integrated than phys-
ical and technical measures. Future progress will depend 
on larger, multi-sample datasets, standardized reporting of 
algorithms and metrics, and collaborative efforts to embed 
interpretability and equity within predictive pipelines. Un-
til such methodological and theoretical maturity is 
achieved, the use of ML in practice should remain cautious, 
serving as a support to - not a substitute for - expert judg-
ment and holistic athlete evaluation. Ultimately, in youth 
TID, transparency, transportability, and theoretical coher-
ence are the pillars upon which meaningful ML applica-
tions must be built. 
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Key points 
 
 Machine learning (ML) can identify complex talent patterns 

across physical, technical, and psychological data, but it 
should complement—not replace—expert judgment. 

 Most studies show moderate accuracy but lack external val-
idation, making their generalizability and real-world relia-
bility limited. 

 Current research is constrained by small samples and bias, 
highlighting the need for larger, multi-sport, and longitudi-
nal datasets with standardized reporting and validation. 
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