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Abstract  
The purpose of this study was to assess the VO2max plateau 
response at VO2max during a series of pre-determined trials. 
METHODS: Ten male well-trained athletes (age, 23.0 ± 3.2; 
height, 183.3 ± 5.5 cm; mass 77.5 ± 11.1 Kg; VO2max 66.5 ± 
5.0 ml.kg-1,min-1), but who were VO2max testing naïve and with 
prior-knowledge of trial number completed four incremental 
tests to volitional exhaustion, separated by ~72-h for the deter-
mination of VO2max and gas exchange threshold. Throughout 
all trials VO2max was recorded on a breath-by-breath basis 
using a pre-calibrated metabolic cart, using a plateau criterion of 
∆ VO2 ≤1.5 ml.kg-1.min-1 over the final 2 consecutive 30 s sam-
pling periods.  A significant difference was observed between 
trial-1 and trial-4 for plateau incidence (p = 0.0285) rising from 
20% in trial-1 to a 70% response rate in trial-4. Furthermore a 
significant difference was observed for VO2dif (difference be-
tween criterion value and ∆ VO2) in trial-1, 1.02 ± 1.69 ml.kg-

1.min-1 (p = 0.038), with non-significant differences observed for 
all other trials, despite a non-significant difference for VO2max 
across all trials (p > 0.05). Finally, a significant difference was 
observed for effort perception (RPE) at volitional exhaustion 
between trial-1 (17.7 ± 1.3) and trial-4 (19.0 ± 1.4) (p = 0.0052).  
These data indicate that prior-knowledge of trial number can 
influence the manifestation of the VO2 plateau in a group of 
well-trained male athletes, thereby suggesting that a form of 
effort control is established in order to preserve the finite anaer-
obic capacity. 
 
Key words: Maximal oxygen uptake; effort control; anaerobic 
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Introduction 
 
The classical outcome of a maximal oxygen uptake test 
(VO2max) is the manifestation of a plateau-like response 
in VO2, in spite of a continued increase in exercise inten-
sity, the so called ‘true’ VO2max. First identified and 
defined by Hill and Lupton (1923) VO2max represents the 
uppermost boundary for aerobic metabolism and reflects 
the integrated response of the cardiovascular, respiratory 
and muscular systems to take-up and utilise oxygen. The 
conventional understanding for the generation of the plat-
eau in VO2, towards the end of such a test, is that an im-
balance ensues between the demand for oxygen at the 
engaged muscle, as expressed by the arterio-venous oxy-
gen difference (a-vO2dif) and the ability of the cardi-
orespiratory system to supply oxygenated blood to the 

muscle to meet the imposed demand, which at sea-level is 
primarily limited by the cardiac output ( Q ).  As volitional 
exhaustion approaches, both Q  and a-vO2dif exhibit a 
plateauing response (Calbet et al., 2007) with VO2 as 
measured directly at the mouth, also levelling-out. Ac-
cordingly the plateau continues to be considered as the 
primary criteria in establishing VO2max (Hill and Lupton, 
1923; Shephard et al., 1968). However there is an increas-
ing body of evidence which suggests that there are signif-
icant variances in reported plateau incidence manifest as a 
function of athlete ability, ergometer selection, VO2 sam-
pling rates and exercise protocol (Astorino, 2009; Doherty 
et al., 2003; Gordon et al., 2012). 

A possible contributor to this variance in plateau 
incidence is the differential ability to recruit type II mus-
cle fibres and hence regulate anaerobic substrate metabo-
lism as recently proposed (Hawkins et al., 2007; Gordon 
et al., 2011). Thus it has been suggested that the levelling 
off in VO2 is dependent on the size of the finite anaerobic 
capacity, with a significant negative relationship being 
observed between the ∆VO2 during the final 60 s of the 
incremental test and the surrogate measure of anaerobic 
capacity, maximally accumulated oxygen deficit (MAOD) 
(Gordon et al., 2011). Further support for these conclu-
sions has come from work showing that when the 
VO2max trial was preceded by a bout of prior-priming 
exercise, in the heavy or severe exercise domains, plateau 
incidence increased by 50 and 35%, respectively, from a 
baseline response rate of 50% in the un-primed state 
(Gordon et al., 2012). The proposed rationale for this 
response being that such prior-priming spares the finite 
anaerobic capacity at the onset of exercise by reducing the 
size of the O2 deficit.   

During closed-loop exercise, such as time-trialling 
in cycling, it is generally accepted that the participant 
adopts a pacing strategy in order to optimise performance 
(Ansley et al., 2004; Foster et al., 2004; Hettinga et al., 
2006). Pacing strategies have been attributed to maximis-
ing substrate metabolism whilst compensating for the 
consequences of fatigue (Noakes and St Clair Gibson, 
2004; St Clair Gibson et al., 2006). Accordingly it is pro-
posed that exercise intensity is modulated in response to 
afferent signals from biological and psychological sys-
tems, which relay the responses of the exercise challenge 
to the brain where appropriate efferent, homeostatic-
orientated responses are issued.  The rationale for these 
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modulations in pace is to ensure that the finite anaerobic 
capacity never becomes fully depleted (Foster et al., 2004; 
Stone et al., 2012). A primary facet of this model is that 
regulation of effort is the product of an algorithm where-
by an individuals’ conscious perception of effort (rating 
of perceived exertion, RPE) is continuously compared to 
a sub-conscious template which is, in turn derived from 
previous exposure to the sensations of pain and fatigue 
and the expectation of the exercise duration (Billaut et al., 
2011; Tucker, 2011). In this connection, recent work by 
(Green et al., 2010) established that pacing is a product of 
training status with those individuals, who were more 
experienced and well-trained, showing a greater propensi-
ty for adopting a suitable effort-control response during a 
close-looped exercise than less experienced counterparts. 

This situation contrasts with traditional VO2max 
tests where the participant is unaware of the end-point 
thereby creating an open-looped condition.  Open-looped 
exercise poses a potential conflict to the pacing model, as 
it has been suggested that in order to regulate pace and 
thereby effort, an endpoint is needed (Mauger and 
Sculthorpe, 2012). Given that the pacing/effort paradigm 
is based upon the establishment of a perceptual-based 
template, the contention is that such a template could be 
developed purely in response to the sensations of pain and 
fatigue established during initial experience of these con-
ditions. Hence during a series of repeated trials there 
would be a regulation of force-output and substrate utili-
sation through anaerobic pathways in response to the 
previously established sub-conscious template (Stone et 
al., 2012). Thus the a-priori hypothesis was that in a 
group of VO2max testing naïve participants the incidence 
of plateau would increase across a series of trials and be 
highest in the final trial due to the development of the 
perceptual-based template derived from the need to con-
serve the finite anaerobic capacity in earlier trials. Ac-
cordingly the purpose of this study was to examine if 
prior knowledge of a VO2max test influences the manifes-
tation of the plateau at VO2max in a series of subsequent 
incremental tests to volitional exhaustion in a group of 
well-trained individuals.  
 
Methods 
 
Participants 
Following local institutional ethical approval (Anglia 
Ruskin University, UK) and having provided written and 
informed consent a total of 10 male trained cyclists volun-
teered to participate in the study (age, 23.0 ± 3.2 yrs; 
height, 1.83 ± 0.06 m; mass 77.5 ± 11.1 Kg). If any par-
ticipant indicated a contraindication to exercise such as 
asthma, recent infection, or hypertension, they were ex-
cluded from the study. The criterion for classification of 
trained was a VO2max ≥ 60 ml.kg-1.min-1 and participation 
in aerobic endurance training > 3 times per week for > 3 
years. An additional key inclusion criterion was imposed, 
that the participants had not undertaken any form of 
VO2max testing prior to this study. Throughout the course 
of the study the participants were encouraged to maintain 
their normal daily and training routines, but to refrain 
from any physical activity in the 24-h period preceding 

any laboratory test. All participants were instructed to 
report to the laboratory fully hydrated and having con-
sumed a balanced meal at least 3-h prior to the test. 
 
Study design 
Each participant reported to the laboratory on four sepa-
rate occasions to undertake an incremental test to exhaus-
tion, with all trials being at the same time of day so as to 
minimise diurnal variation, with each visit separated by at 
least 48-h, but no longer than 96-h. Four trials were se-
lected as they would allow for an understanding of the 
effect of prior-knowledge but would not have a large 
enough time frame between the first and last trial to be 
significantly affected by training and de-training respons-
es. During each visit the participants completed an incre-
mental test to exhaustion on an electronically controlled 
cycle ergometer (Lode Excalibur Sport, Groningen, Neth-
erlands) for the determination of VO2max and gaseous 
exchange threshold (GET). The geometry of the cycle 
ergometer was established for each participant during the 
first trial and then maintained for all subsequent trials.  
The participants were not made aware of the primary 
rationale for the study and were simply informed that the 
focus of the research was on VO2max repeatability.  

VO2max protocol: For the determination of both 
GET and VO2max the participants undertook an incre-
mental ramp test to volitional exhaustion, from an initial 
workload of 100 W for 1 min followed by a ramped in-
crease in resistance of 0.42 W.s-1. For all trials the partici-
pants were asked to maintain a constant cadence of 80 
rpm and the test was terminated when the cadence de-
creased by > 5 rpm from that prescribed, or when they 
reached volitional exhaustion. During each trial, pulmo-
nary gas exchange variables (VO2, VCO2, VE and RER) 
were recorded on a breath-by-breath basis using a pre-
calibrated metabolic cart (MSX 671; Ferraris Respiratory, 
Middlesex, UK). Heart rate responses were also recorded, 
continuously, throughout the course of all trials (Polar 
810s, Kemple, Finland), with the data averaged on a 15 s 
basis. Additionally RPE was ascertained using the 6-20 
scale and was collected both pre and immediately upon 
completion of the exercise challenge.  For trial-1 the in-
cremental test was preceded by a self-selected warm-up 
which was also monitored. To ensure consistency across 
the remaining trials (2-4) the initial warm-up was stand-
ardised for each individual using that adopted for trial-1.  
Throughout all of the trials verbal encouragement was 
regulated in accordance with previous work (Andreacci et 
al., 2002). No verbal encouragement was given until 6 
min of the test had elapsed and here it was applied in the 
form of a chosen phrase such as “you’re doing well”.  
Similarly no further encouragement was given until an 
RER of 1.0 was observed when a reminder to the partici-
pant to maintain their selected cadence was provided.  
Finally no information was provided to the participant 
regarding their performance for trials 1-3, however upon 
completion of trial 4 they were given a full debrief as to 
what they had achieved.  

For all trials a VO2max was confirmed according 
to previously established methods (Doherty et al., 2003; 
Lucia et al., 2006) of a ∆ VO2 over the final 2 30 s sam-
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pling periods ≤1.5 ml.kg-1.min-1, which was designated as 
a plateau response.  In the absence of a plateau, a maxi-
mal effort was established and a VO2peak confirmed 
according to previously established ‘secondary’ criteria: 
RER ≥1.15, ∆RER ≥0.4, peak blood lactate (pBLa) ≥ 8.0 
mM, a RPE >19 (Gordon et al., 2012) and a maximal 
heart rate (HRmax) 205.8-0.685(age) ± 3 b.min-1 (Inbar et 
al., 1994). If neither the primary (plateau), nor secondary 
criteria were met, the test was deemed a non-maximal 
effort and discarded.  Additionally GET was determined 
according to the excess CO2 method (ExCO2) (Volkov et 
al., 1975), where ExCO2 reflects an exercise intensity 
where the production of CO2 exceeds that witnessed un-
der steady-state conditions and is expressed as ((VCO2

2 / 
VO2) - VCO2). 

Prior to all trials commencing, baseline capillary 
blood samples were collected for the automated analysis 
of haemoglobin (5 μl) (β-haemoglobin, HemoCue, UK), 
haematocrit (10 μl) and erythrocytes (10 μl) (Dr LP20 
Miniphotometer, Dr Lange, Germany). Additionally 
blood lactate samples were recorded both pre and imme-
diately post exercise (10 μl) (GM7 Micro-Stat analyser, 
Analox Instruments, UK). All equipment was calibrated 
according to the manufacturers’ instructions. 

Pulmonary gas exchange variables: During all of 
the incremental trials respiratory volumes and flow were 
determined with the participant breathing through a low 
resistance mouthpiece and turbine assembly. Expired gas 
concentrations (O2, CO2, N2 and Ar) were analysed con-
tinuously at a rate of 60 ml.min-1 via a fine-wire capillary 
line of 2 m and a bore of 0.5 mm connected to the mouth-
piece assembly. Using custom metabolic cart software, 
respiratory volumes and gas concentrations were aligned 
and processed to obtain respiratory gas exchange varia-
bles (VO2, VCO2, VE, RER). Prior to each trial, the met-
abolic cart was calibrated in line with manufacturers’ 
specifications and in accordance with previous studies.  In 
accordance with previous studies (Astorino and White 
2010; Midgley et al., 2006) the coefficient of variation 
within our laboratory for athletes of a similar age and 
training status using the same protocol as adopted for this 
study is 3.4%. 
 
Statistical analysis 
The plateau in VO2 was calculated along with all of the 
aforementioned secondary data, means and standard devi-
ations were derived for all variables. Using Levene’s test 
for homogeneity of variance the data was shown to be 
both normally distributed and homogenous.  As this was 
the case a repeated measures ANOVA was applied to 
assess the null hypothesis that athlete experience has no 
influence on the indices of VO2max, GET and associated 
sub-maximal responses. To determine the presence, or 
absence, of a plateau the slope in VO2 during the final 60 
s of the incremental test was determined using least 
squares regression. Confirmation of plateau manifestation 
was evaluated using a non-parametric binomial test, 
where ∆ VO2 ≥1.5 ml.kg-1.min-1 =0 (no plateau) and <1.5 
ml.kg-1.min-1 =1 (plateau).  A binomial test was also used 
to assess VO2dif = the difference between the derived 
∆VO2 and the prescribed ∆VO2 criterion value for a plat-

eau response of 1.5 ml.kg-1.min-1, where Trial 1 > Trial 4 
=1 and Trial 1 < Trial 4 =0. 

Plateau incidence was also confirmed using a re-
peated measures ANOVA which was applied to the re-
gression slope of the VO2 data to determine if there was 
any treatment x participant interaction.  For the RPE data, 
a non-parametric Kruskal-Wallis ANOVA was applied.  
For all statistical analysis the alpha level was set at p < 
0.05 and all analyses completed using SPSS version 20 
(SPSS, Chicago, IL). 
 
Results 
 
Of the 10 participants only 2 met the primary criteria for a 
plateau in VO2 at VO2max (<1.5 ml.kg-1.min-1) for trial-1. 
For trial-2 the response rate was 5 out of 10 which was 
also repeated for trial-3 while for trial-4 the response rate 
was 7 out of 10 participants. This indicates a significant 
difference between trials 1 and 4 (p = 0.028) and a trend 
towards increasing plateau attainment from trial-1 to- 4.  
Although not showing a significant difference, the ∆VO2 
across the final 2 30 s sampling periods demonstrated a 
distinct negative trend of 1.23 ml.kg-1.min-1 between trials-
1 and -4. This trend is illustrated in Figure 1, where 9 out 
of 10 participants exhibited a VO2dif in trial-4 that was 
less than those in trial-1. Here a binomial test revealed a 
significant difference (p = 0.02) in VO2 between trials-1 
and -4. Additionally when the ∆ VO2 response during the 
final 60 s of the test was directly compared to the plateau 
criteria of 1.5 ml.kg-1.min-1 (VO2dif) a significant differ-
ence was observed for trial-1, 1.02 ± 1.69 (p = 0.04), with 
non-significant differences revealed for trial-2, 0.17 ± 
1.11, trial-3, 0.18 ±1.24 and trial-4 of -0.22 ± 0.78 ml.kg-

1.min-1 (p > 0.05). Non-significant differences were ob-
served for all other trial interactions (p > 0.05).   
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Figure 1. ∆VO2 over the final two 30 s sampling periods of 
the incremental test to exhaustion, where VO2dif  = the dif-
ference between the derived ∆ VO2 and the prescribed ∆VO2 
criterion value for a plateau response of 1.5 ml.kg-1.min-1, 
where TR 1-4 refer to trials 1-4.  
 

The time orientated responses across the four trials 
are presented in Table 2, there were however no signifi-
cant changes in  any  of  the time-based  responses across  
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           Table 1. Physiological and performance derived responses across the four trials. Data are means (±SD). 
 Trial 1 Trial 2 Trial 3 Trial 4 
VO2max (l∙min-1) 4.98 (.55) 4.97 (.46) 4.94 (.47) 5.12 (.57) 
VO2max (ml∙kg-1∙min-1) 66.45 (5.02) 66.42 (5.09) 65.95 (5.03) 68.78 (7.05) 
Δ VO2 (ml∙kg-1∙min-1) 1.16 (1.94) 1.29 (1.75) 1.59 (1.27) .86 (1.33) 
VCO2max (l∙min-1) 5.32 (.52) 5.31 (.64) 5.43 (.41) 5.31 (.47) 
VCO2max (ml∙kg-1∙min-1) 71.16 (5.49) 70.70 (5.79) 72.69 (6.40) 71.42 (6.79) 
ΔVCO2 (ml∙kg-1∙min-1) 2.27 (2.03) 2.46 (1.82) 2.87 (1.25) 1.72 (1.48) 
RERmax 1.08 (.07) 1.08 (.08) 1.11 (.06) 1.05 (.06) 
VEmax (l∙min-1) 184.15 (17.22) 185.36 (18.74) 189.82 (20.52) 188.39 (22.81) 
GET %VO2max 59.36 (5.38) 59.38 (7.79) 59.73 (6.33) 59.36 (4.35) 
HRmax 184.2 (10.3) 183.1 (7.8) 181.5 (8.9) 183.5 (10.8) 
BLamax 9.80 (2.30) 9.29 (2.75) 8.72 (1.49) 9.56 (2.61) 
Wmax 422.75 (22.39) 425.63 (18.95) 421.85 (14.72) 426.05 (14.93) 

Where ΔVO2max  =  change in VO2 over the final two consecutive 30 s sampling periods, Δ VCO2 = change in VCO2 during the fi-
nal two consecutive 30 s sampling periods, RERmax = respiratory exchange ratio obtained at VO2max , VEmax = minute ventilation 
at VO2max, GET% VO2max = gas exchange threshold expressed as a % VO2max, HRmax = heart rate recorded at VO2max , BLamax 
= blood lactate concentration recorded at the point of volitional exhaustion, Wmax = power output derived at volitional exhaustion. 
 

trial (p > 0.05). The RPE’s recorded at the point of test 
termination across the four trials were 17.7 ± 1.3, 18.3 ± 
1.4, 18.7 ± 1.1 and 19.0 ± 1.4 for trials -1 to -4 respective-
ly.  These data revealed a highly significant difference for 
effort perception between trial-1 and trial-4 (p = 0.005).  
Additionally when considering the RPE within trials it 
was shown to be significantly, but negatively correlated 
against VO2dif for trial-1, r = -0.658 (p = 0.04) and posi-
tively correlated for trial-4, r = 0.654 (p = 0.04).   

The haematological responses obtained prior to tri-
al-1 were 144.3 ± 13.8 g.dl-1 (Hb), 44.7 ± 5.2 % (HcT) 
and (Ery) 4.81 ± 0.56 (mio·μl-1), with no significant 
changes in any of these variables across the 4 trials (p > 
0.05). All performance and physiologically derived re-
sponses to the four incremental test trials are presented in 
Table 1, which shows that there were for the majority of 
indices no-significant differences across trial.  
 
Discussion 
 
The purpose of this study was to explore whether during a 
series of repeated, traditionally orientated VO2max trials, a 
controlled-effort was employed.  An a-priori hypothesis 
was established based on the predication of pacing being 
employed as a response to the need to modulate substrate 
metabolism across trials, to ensure that the finite anaero-
bic capacity never becomes fully depleted (Foster et al., 
2004; Tucker, 2011). Since the plateau in VO2 at VO2maxx 
is a function of the same finite anaerobic capacity (Haw-
kins et al., 2007; Gordon et al., 2011), it was further hy-
pothesised that plateau incidence would increase with 
repeated exercise trials. The reported findings support this 
hypothesis showing an increased incidence of plateau 
response between trial-1 and trial-4, coupled with a sig-

nificant difference in VO2dif between trial-1 and trial-4.  
These differences were manifest despite no other changes 
in measured responses, including exercise time to exhaus-
tion, VO2max or GET. 
During an incremental test to exhaustion, using a similar 
protocol to that adopted for the current study, it has previ-
ously been demonstrated that there was a significant de-
crease in the finite high energy phosphate capacity (Green 
and Patla, 1992). Indeed Green et al., (1992) indicated 
that upon arrival at VO2max and hence volitional exhaus-
tion, the PCr concentration decreased by 86% in approx-
imate proportion to the increase in free Pi. As a conse-
quence of the increasing exercise intensity and associated 
decline in the PCr concentration, there was a notable 
decrease in the intramuscular glycogen concentration, 
coupled with an increase in muscle lactate and IMP, re-
sulting in a significant decrease in muscle pH (Bertuzzi et 
al., 2013; Cooke et al., 1988; Green and Patla, 1992).  
Previous work suggests that effort-control strategies are 
adopted through a conscious and/or subconscious desire 
to limit the onset of premature fatigue through a modula-
tion of work over the desired task duration (Billaut et al., 
2011; Tucker 2011). By integrating this modulation of 
work to the metabolic changes associated with fatigue, 
(H+, pH, decreasing muscle glycogen, PCr etc.) skeletal 
muscle mass recruitment can be regulated to match me-
chanical output against performance (Billaut et al., 2011; 
Foster et al., 2004; St Clair Gibson et al., 2006). Such a 
strategy would be established at the onset of the exercise 
challenge, based upon previous associated sensations of 
pain and fatigue (Billaut et al., 2011; St Clair Gibson et 
al., 2006), current physiological (substrate availability, 
metabolic by-products etc.) and psychological state (mo-
tivation, arousal etc.), together with a perceptually

 
                    Table 2. Time orientated responses across the four trials. Data are means (±SD). 

 Trial 1 Trial 2 Trial 3 Trial 4 
Total (s) 834.6 (53.7) 841.5 (45.5) 832.4 (35.3) 842.5 (35.8) 
VO2max-arr (s) 813.6 (52.2) 817.5 (38.7) 811.4 (33.3) 818.5 (32.9) 
VO2max-Tlim (s) 21.0 (12.6) 24.0 (14.5) 21.0 (12.6) 24.0 (14.5) 
GET (s) 479.0 (52.2) 484.9 (65.3) 485.2 (58.9) 481.8 (44.4) 
GET – VO2max(s) 337.2 (51.0) 332.6 (71.3) 326.3 (49.7) 341.5 (34.1) 

Where Total = total exercise time from trial onset to volitional exhaustion, VO2max-arr = time taken from exercise onset to the 
onset of VO2max, VO2max-Tlim = time from VO2max arrival to volitional exhaustion, GET = time taken from exercise onset to 
the gas exchange threshold and GET – VO2max = time taken from gas exchange threshold to the point of volitional exhaustion.    
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regulated response to the perceived exertion (Tucker, 
2011). 

However, in the present study the participants were 
VO2max testing naïve so for trial-1 had no previously es-
tablished perceptual template against which to modulate 
their effort, but were fully aware of the total study dura-
tion (4-trials). Accordingly for the initial exercise chal-
lenge (trial-1), participants had no perception of the end-
point against which work could be modulated, hence 
rendering the feedback from the engaged muscles redun-
dant in this context. In this connection it is interesting that 
trial-1 exercise time was, on average, 8 s shorter than that 
of trial-4 (longest), supporting the contention that for 
trial-4 there was a perceptual template against which work 
could be modulated.   

Of course the participants in the present study were 
not totally naïve to the nature of the protocol employed as 
they were both well-trained and aware of the total number 
of trials which they needed to perform. The latter factor is 
significant to an effort-control paradigm, which projects 
that an exercise end-point is a fundamental component to 
the perceptual template in regards to the allocation of both 
physiological and psychological assets (Billaut et al 2011; 
St Clair Gibson et al., 2006). The paradigm based upon 
the notion of effort modulation which is a function of 
previously established homeostatic or reference sensa-
tions (Damasio et al., 2000; 2001), which becomes a 
permanent set-point against which all subsequent expo-
sures to the same activity are compared.  The contention 
being that where the exposure is not immediate the per-
ceptual regulation of effort ensues.  

When an exercise end-point is not known (number 
of trials) there is a down regulation of muscle activity in 
order to reduce the metabolic cost and thereby spare the 
finite anaerobic capacity (Billaut et al., 2011). It is con-
tended that the plateau variance, observed in the present 
study, is a function of the prior knowledge of the number 
of trials to be completed, so a maximal effort could be 
applied in the final (fourth) trial. Trial-1 (two) and -3 both 
showed an identical but increased (50%) plateau inci-
dence and by association a greater reliance on the finite 
anaerobic capacity than for trial-1, suggesting a rationing 
of the finite anaerobic resources as a consequence of prior 
knowledge from trial-1 but a recognition that the final 
trial (4th) beyond which there was no requirement for 
sparing the anaerobic reserve had not been reached.   

Recent work (Gordon et al., 2013), studying the ef-
fects of blood donation, emphasise the process of sparing 
the anaerobic capacity during incremental testing. Here, 
despite a reduction in blood volume of ~450 mm3 and 
associated decrease in O2 carrying capacity of ~9%, there 
was no change in plateau incidence, suggesting that dur-
ing an incremental test to exhaustion the finite anaerobic 
capacity is still not fully depleted. So although in the 
present study the participants could not modulate mechan-
ical force output the data would suggest that they adopted 
a metabolically orientated control of effort, in response to 
prior knowledge of both trial number and exposure to the 
sensations of pain and fatigue.    

The training status of the participants in the study 
is also of importance to the outcomes observed.  Previous 

work, (Green et al., 2010) highlights that pacing is a func-
tion of training volume and experience.  All the cyclists in 
the present study were well-trained endurance athletes, 
(VO2max: 66.5 ± 5.0 ml.kg-1.min-1 and training history of 
>3 years).  Hence whilst the  detailed training history of 
the participants was not known, it is accepted that in order 
to enhance endurance capability the athlete would need to 
undertake both low intensity and interval-based training 
(Billat , 2001; Seiler et al., 2006). Since the latter would 
typically be in excess of the GET the athlete would be 
subject to the sensations of pain and fatigue, similar to 
those experienced during an incremental exercise test. 

In a recent study Scharhag-Rosenberger et al., 
(2014) demonstrated that with just 1.5-h recovery be-
tween VO2max trials, four incremental tests could be com-
pleted with no-significant effect on either VO2max or 
Wmax. This was in a group of trained endurance athletes, 
displaying similar physical characteristics to those com-
pleting the present study. The lack of change in VO2max 
reported by Scharhag-Rosenberger et al. (2014) is in 
agreement with that shown in the present study. These 
findings along with others (Hawkins et al., 2007; Wagner, 
2000) suggest that although VO2max is primarily limited 
by cardiac output and O2 extraction/utilisation at the mus-
cle, the plateau is independent of these responses.  Indeed 
recent works (Calbet et al., 2007) suggest that Q

max is 
attained at ~86% Wmax as a function of a levelling off in 
stroke volume (SV) at ~64% Wmax. These findings sug-
gest that the maintenance of force generation in response 
to the continual increase in exercise intensity is a conse-
quence of the reliance on the finite reserves of the high 
energy phosphates and intramuscular glycogen. Although 
the relevance of the VO2max plateau in establishing a max-
imal effort has been challenged (Alpert, 1992; Noakes, 
2008) its significance should not be under-estimated.  For 
as Hill and Lupton, (1923) first projected the existence of 
the plateau is central to the notion of a maximal rate of 
oxygen uptake and conforms to the concept of VO2max 
being dependent on Q

max. Of note is that in this popula-
tion group of VO2max naïve participants the plateau re-
sponse rate was lower than reported values in the litera-
ture for athletes of equitable fitness (Astorino 2009; 
Doherty et al., 2003; Gordon et al., 2011). Given that the 
VO2 plateau is considered the primary criterion in deter-
mination of a maximal effort these findings lend support 
to the need for such approaches as a verification trial, 
particularly when the participant is naïve to the exercise 
challenge. Accordingly debate continues as to the vari-
ance in plateau incidence with potential contributors be-
ing ergometer type (Gordon et al., 2012), protocol (Kon-
Yoon et al., 2007), sampling and analysis methods (Asto-
rino, 2009; Robergs et al., 2010) and population group 
(Doherty et al., 2003; Lucia et al., 2006). However in 
order for the debate to be framed and the generation of a 
series of industry recognised guidelines there needs to be 
recognition of what the plateau is and represents.  

 
Conclusion 
 
This  study  has  demonstrated  that  in  a  group  of   well- 
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trained male endurance cyclists, a closed-loop condition is 
established with prior knowledge of trial number which 
triggers the sparing of the finite anaerobic capacity when 
exposed to the sensations of pain and fatigue which are 
evident during such trials. It is proposed that by establish-
ing the closed-loop condition prior to commencement of 
data collection that a metabolically orientated control of 
effort ensues which prevents both a depletion of the an-
aerobic energy reserves and resultant prolonged exposure 
to the sensations of pain and fatigue. Future work should 
address whether plateau manifestation shows a similar 
response pattern in both un-trained individuals who have 
not had significant exposure to the sensations of exercise-
induced pain and fatigue, or in female participants as the 
majority of research to date focuses on responses in male 
participants.   
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Key points 
 
• In well-trained athletes the incidence of plateau at 

VO2max increases in conjunction with an increase in 
trial number and the associated sensations of pain 
and fatigue. 

• By informing the participant of the number of trials 
to be completed a closed-loop condition is devel-
oped whereby effort in all trials is compared to a 
perceptually developed template. 

• Closed-loop condition leads to a sparing of the 
finite anaerobic capacity during incremental tests 
when the number of trials to be completed is 
known. 
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