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Abstract  
The primary purpose of this study was to identify potential risk 
factors for sports injuries in professional basketball. An observa-
tional retrospective cohort study involving a male professional 
basketball team, using game tracking data was conducted during 
three consecutive seasons. Thirty-three professional basketball 
players took part in this study. A total of 29 time-loss injuries 
were recorded during regular season games, accounting for 244 
total missed games with a mean of 16.26 ± 15.21 per player and 
season. The tracking data included the following variables: 
minutes played, physiological load, physiological intensity, me-
chanical load, mechanical intensity, distance covered, walking 
maximal speed, maximal speed, sprinting maximal speed, maxi-
mal speed, average offensive speed, average defensive speed, 
level one acceleration, level two acceleration, level three acceler-
ation, level four acceleration, level one deceleration, level two de-
celeration, level three deceleration, level four deceleration, player 
efficiency rating and usage percentage. The influence of demo-
graphic characteristics, tracking data and performance factors on 
the risk of injury was investigated using multivariate analysis 
with their incidence rate ratios (IRRs). Athletes with less or equal 
than 3 decelerations per game (IRR, 4.36; 95% CI, 1.78-10.6) and 
those running less or equal than 1.3 miles per game (lower work-
load) (IRR, 6.42 ; 95% CI, 2.52-16.3) had a higher risk of injury 
during games (p < 0.01 in both cases). Therefore, unloaded play-
ers have a higher risk of injury. Adequate management of training 
loads might be a relevant factor to reduce the likelihood of injury 
according to individual profiles.  
 
Key words: Game tracking, multivariate analysis, decelerations, 
distance, injury prevention. 
 

 

 

Introduction 
 
Injuries are a significant issue in professional sports such 
as basketball (Deitch, 2006). A detrimental effect in per-
formance (Busfield et al., 2009) and a significant number 
of games missed due to injury at the end of the season have 
been highlighted in several studies on different profes-
sional male basketball leagues (Caparros et al., 2016; 
Podlog et al., 2015). Moreover, a significant inverse asso-
ciation between games missed due to injury and the per-
centage of won games at the end of the competitive season 
has also been confirmed in the past in professional male 
basketball (Podlog et al., 2015). Patellofemoral inflamma-
tion is the most significant injury regarding lost competi-
tion days, while ankle sprain is the most common injury 
among professional male basketball players (Drakos et al., 
2010). The monetary impact that these sports injuries have 

on professional teams and franchises is not negligible. In 
the NBA, during the 2000-2015 period, losses between 10 
and 50 million dollars per team and season due to injuries 
were reported (Talukder et al., 2016). Nevertheless, despite 
apparent interest and enormous research and practical ef-
forts to prevent injuries, there is still no practical solution 
to decrease the injury incidence significantly in this family 
of sports. 

To address this issue, a relationship between com-
petitive schedule congestion and the occurrence of sports 
injuries has been studied previously (Drew and Finch, 
2016; Teramoto et al., 2016 ). Increased incidence of sports 
injuries in specific periods within a season has been re-
ported in some sports (Carling et al., 2016; Folgado et al., 
2015). Level of competition and gender also seem to play 
a significant role in the epidemiological incidence (Ander-
son et al., 2003; Deitch, 2006; Gabbett and Domrow, 
2007). High-level athletes are more prone to injuries due to 
competing demands. Thus, NBA players chances to suffer 
a game-related injury are twofold when compared to their 
collegiate counterparts (Deitch, 2006). Nevertheless, an in-
crease in the number of sports injuries is observed at a sub-
elite level too (Gabbett and Domrow, 2007). 

A substantial number of initiatives have been pre-
sented to study the incidence of injuries in team sports 
(Drew and Finch, 2016; Ullah et al., 2012). Novel ap-
proaches to prevent and manage sports injuries tend to use 
technology consistently during competition. Player track-
ing (Sampaio et al., 2015), accelerometry (Colby et al., 
2014) and global positioning systems (GPS) (Casamichana 
et al., 2013; Dellaserra et al., 2014; Rossi et al., 2017) are 
today’s sports standard tools. Although the use of these 
technologies can be useful in all disciplines, they have 
spread mainly in team sports such as basketball (Caparrós 
et al., 2016; Sampaio et al., 2015), soccer (Casamichana et 
al., 2013; Osgnach et al., 2010), Australian football (Carey 
et al., 2016; Colby et al., 2014) and rugby (Gabbett and 
Domrow, 2007; Gabbett and Jenkins, 2011). In this pro-
cesses, professional teams and researchers take advantage 
of technological innovations by using data obtained in sta-
diums and competition venues (Mangine et al., 2014; 
Sampaio et al., 2015). For instance, top football teams 
seem to rely on external training load variables such as ac-
celeration, total distance, distance covered above specific 
speeds and metabolic power to make their decisions when 
managing training and competition loads (Nassis and Gab-
bet, 2017). The advantage is that average and peak speeds, 
accelerations or decelerations values (Casamichana et al., 
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2013), total distance traveled or the total number of high-
intensity efforts performed while in training or competition 
(Carling et al., 2010) can be determined by the use of dif-
ferent electronic devices and systems, fairly frequent in 
elite sport. That is the case of player tracking, a technology 
that provides kinematic variables, while also enables a bet-
ter understanding of physiological, technical and tactical 
variables (Mangine et al., 2014; Sampaio et al., 2015). 

This data is essential in the field of injury preven-
tion because different values of external and internal train-
ing loads can be employed to establish ratios that may in-
dicate that the athlete is has been situated in a risk area 
(Gabbett, 2016). A vast body of literature has previously 
used external loads to find a consistent association between 
ratio values and the risk of injury (Colby et al., 2014; Drew 
and Finch, 2016; Gabbett and Jenkins, 2011; McNamara et 
al., 2017). The use of the acute:chronic workload ratio 
(ACWR) has allowed a better understanding of the rela-
tionship of workload and risk of injury (Gabbett and 
Jenkins, 2011; Hulin et al., 2013; 2016; Murray et al., 
2017) in sports such as cricket (McNamara et al., 2017), 
football (Bowen et al., 2017) and rugby (Gabbett and 
Jenkins, 2011; Hulin et al., 2016). However, to our 
knowledge, only one study using this methodology has 
been conducted in professional basketball (Weiss et al., 
2017). While providing an interesting starting point for 
workload-injury research in this sport, it was limited to one 
playing season. Given the popularity of this discipline, it 
seems of interest to establish whether a relationship exists 
between player workloads and injury risk in professional 
basketball by using data from more than one competitive 
season to reinforce the strength of statistical models. 

The primary purpose of this study was to identify 
possible risk factors for injury related to variables from 
game tracking data in professional basketball to improve 
specific preventive strategies. 
 

Methods 
 
An observational, retrospective cohort study was con-
ducted between October and April during three consecu-
tive regular seasons, obtaining data from a total of 2613 
observations and 246 games from 33 different players of a 
professional male basketball team. The use of these data 
attended to the standards of the Declaration of Helsinki, re-
vised in Fortaleza (World Medical Association, 2013). 
Players were assigned an individual identifier code with the 
identity concealed, ensuring player anonymity was main-
tained. 

Data collection was based on the methodology of 
the UEFA consensus statement for epidemiological studies 
(Hägglund et al., 2005). A time-loss injury was defined as 
any injury (contact and non-contact) occurring during a 
practice session or game which caused an absence for at 
least the next practice session or competition. Time-loss 
from associated injuries was retrospectively determined by 
the number of days of absence from participation.  
All study data were available to the general public in open-
access websites and included the demographic characteris-
tics of the players, player tracking, injury and performance 
values. Tracking data were obtained from the website of 
the company STATS (http://stats.com/), responsible of the 

game tracking process in the competition (SportsVU, 
Northbrook, IL, USA) following the trend of previous 
studies (Embiricos and Poon, 2014; Hu et al., 2011; Lofti 
et al., 2011; Maymin, 2013; Siegle et al., 2013; Tamir and 
Oz, 2006). Injury information was obtained from public re-
sources (www.rotoworld.com, www.cbs.com and 
http://www.basketball-reference.com/), following the 
same procedure with the performance data 
(http://stats.com/ and http://www.basketball-refer-
ence.com/). Again, several studies in the past have used 
this information showing its reliability (Gesbert et al., 
2016; Maheswaran et al., 2012; Yonggangniu and Zhao, 
2014). These records contained both non-tracking and 
tracking data. The different databases were then collated to 
assign the specific information about each game to each 
specific player. All 23 tracking and non-tracking variables 
presented by the companies designing the software were 
selected. Tracking variables were categorized into four 
main groups: physiological variables, speed and distance 
variables, mechanical load variables, and motor variables 
(Table 1).   

Time-loss injuries suffered during regular season 
games were included in the study. There are no other ex-
clusion criteria. Minutes and games played by every player 
were considered on the unbalanced study design with re-
peated measures. Given that not all of the players were ob-
served for the same number of seasons, and that the number 
of games per season varied from one player to another. The 
possible risk variables for injuries considered were height, 
mass, age, season year, season month, won/lost game and 
home/away venue, minutes played, and the additional var-
iables shown in Table 1. 

 
Statistical analysis 
A descriptive analysis of all variables of interest was car-
ried out. In the case of categorical variables, absolute and 
relative frequencies were presented. For quantitative vari-
ables, measures of central tendency (mean and median) and 
statistical dispersion (standard deviation, percentiles 
25th (P25), percentiles 75th (P75), and range) were calcu-
lated. To study the risk factors from the games tracking 
data variables, a generalized linear mixed model (GLMM) 
was conducted assuming the frequency of the injuries fol-
lowed a Poisson’s distribution. The same statistical ap-
proaches have been previously applied (Casals et al. 2015). 
Following the studies of Bolker (2009), Vanderbogaerde 
(2010) and Casals (2014), a list of relevant information and 
basic characteristics of the GLMM model were reported. 
The model expression for player i in his jth games is the 
following: log (λij) = log(mij)+ Xij β+ ui where Yij~Po(λij). 

λij is the number of injuries, mij  is the number of minutes 
exposures of player, which is the offset of this model, and 
Xij includes all independent variables of interest. The vec-
tor β contains the fixed effects, whereas ui is the random 
effect corresponding to player i. The random effects are as-
sumed to be independent and normally distributed: ui 
~N(0;σ2), where σu

2 is the variance of random effect. The 
model accounted for repeated measures and the fact that 
the values of Xij could change from one game to the next. 

The  simplification of  the model was performed by 
backward selection of variables from the full model, and 
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models were compared using the likelihood ratio test 
(LRT) until a minimal adequate model was obtained. 
Model selection was based on the Akaike Information Cri-
terion (AIC). To estimate the model variables we used the 
Gauss-Hermite quadrature (GHQ) with 5 points (Bolker, 
2009). The statistical significance of the fixed effects asso-
ciated with the covariates included in the model was as-
sessed using the Wald test. The correlation and the main 
possible interactions among the covariates were checked in 
the final model.  A possible over-dispersion in the model 
was studied using Pearson’s dispersion parameter (Bolker, 
2009). Measures of association were calculated using inci-
dence rate ratios (IRR) with 95% confidence intervals (CI). 
To prevent overfitting, a cross-validation procedure was 
completed using leave-one-out cross-validation (LOOCV). 
In the LOOCV, the prediction model is trained on data 

from all of the participants except one, which is “held out” 
and used as the test dataset. The process is repeated until 
all participants have served as the test data set. Moreover, 
the performances of estimation models were evaluated by 
the commonly used measures of goodness-of-fit: RMSE 
(Root Mean Square Error) and MAE (Mean Absolute Er-
ror). Finally, to assess the predictive or discriminatory abil-
ity of the model we performed the area under the curve 
(AUC) (Lopez-Raton et al., 2014). 

Statistical significance was set at p < 0.05. To im-
prove the interpretability of the clinical finding, sugges-
tions made by Cook (2016) were followed, and continuous 
data were divided into categories (a dichotomized variable 
based on the approach of CatPredi library in R (Barrio et 
al., 2015). Also, facilitation of data interpretation was 
achieved by providing the IRR. 
 

 
Table 1. Description of selected tracking and non-tracking (performance) factors. 

TRACKING FACTORS (http://stats.com/)
Acronym or name Description 
Physiological variables  

Physiological Load (Phy_Load) 
Every 0.25 second throughout the course of a game the product of a player’s 
mass, velocity and distance.  
Phy_Load = mass*average velocity*distance 

Physiological Intensity (Phy_Int) 
Physiological load, divided by every minute he plays.  
Phy_Int = Phy_Load /minutes played 

Speed and distance variables  
Defensive average speed (Def_Average_Speed) Average Speed Run on Defense (ml/h) 
Offensive average speed (Off_Average_Speed) Average Speed Run on Offense (ml/h) 
Distance Total distance run (ml) 
Mechanical Load variables  

Mechanical Load (Mech_Load) 

Measures the change of speed by a player throughout the course of the game. 
These are identified as accelerations and decelerations, derived from the 
changing of speeds throughout the locomotor activities (walk, jog, run, sprint, 
max). Each level includes a weighting factor to account for the severity of the 
acceleration and deceleration 

Mechanical Intensity (Mech_Int) Mechanical Load/minutes played 
Acceleration (acc) Increase in intensity that is maintained for at least one second 
Level one acceleration (Acc_1) 0.5 m/s2 acceleration  
Level two acceleration (Acc_2) 1 m/s2 acceleration 
Level three acceleration (Acc_3) 2 m/s2 acceleration 
Level four acceleration (Acc_4) 4 m/s2 acceleration 
Deceleration (Dec) Decrease in intensity level  that is maintained for at least one second 
Level one deceleration (Dec_1) 0.5 m/s2 deceleration  
Level two deceleration (Dec_2) 1 m/s2 deceleration 
Level three deceleration (Dec_3) 2 m/s2 deceleration  
Level four deceleration (Dec_4) 4 m/s2 deceleration 
Locomotor variables  
Walk maximal speed (WALK_MAX) player individually achieved 0-20% of maximal speed 
Run maximal speed (RUN_MAX) player individually achieved 40-60% of maximal speed 
Sprint maximal speed (SPRINT_MAX) player individually achieved 60-80% of maximal speed 
Maximal speed (MAX_MAX)  player individually achieved >80% of maximal speed 

NON-TRACKING FACTORS (www.basketball-reference.com) 
Acronym or name Description 
Performance variables  

Player efficiency rating  (PER) 

Rating of a player's per-minute productivity (1 / MP) *[ 3P + (2/3) * AST  + (2 - factor * 
(team_AST / team_FG)) * FG + (FT *0.5 * (1 + (1 - (team_AST / team_FG)) + (2/3) * 
(team_AST / team_FG)))- VOP * TOV- VOP * DRB% * (FGA - FG)- VOP * 0.44 * (0.44 + 
(0.56 * DRB%)) * (FTA - FT)+ VOP * (1 - DRB%) * (TRB - ORB)+ VOP * DRB% * ORB + 
VOP * STL + VOP * DRB% * BLK - PF * ((lg_FT / lg_PF) - 0.44 * (lg_FTA / lg_PF) * VOP) ]

Usage percentage (Usg%) An estimate of the percentage of team plays used by a player while he was on the floor: 100 * 
((FGA + 0.44 * FTA + TOV) * (Tm MP / 5)) / (MP * (Tm FGA + 0.44 * Tm FTA + Tm TOV))

tm: team; lg: league; min: minutes played; AST: number of assists; 3P: number of three-point field goals made; FG: number of field goals made; FGA: 
number of field goals attempted; FT number of free throws made; FTA: number of free throws attempted; VOP: value of possession in reference to the 
league; TOV: number of turnovers; RB: number of rebounds; ORB: number of offensive rebounds; DRB: number of defensive rebounds; TRB: number 
of total rebounds; RBP, percentage of offensive or defensive; 1g: team pace value; MP: minute played 
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All statistical analyses were performed with the sta-
tistical package R (The R Foundation for Statistical Com-
puting, Vienna, Austria), version 3.3.3.  In particular, the 
R package lme4 (Bates, 2014) was used to fit the GLMM.  
 
Results 
 
The demographic characteristics of the 33 professional 
basketball players included in this study were: mean ± SD 
age of 24.9 ± 2.9 years, a height of 1.95 ± 0.09 m and a 
weight of 98.9 ± 12 kg. The team played 82 games every 

regular season, with a total exposure of 58457 minutes dur-
ing all 7-month seasons (3 consecutive seasons). The team 
played an average of 3.4 games weekly during the compe-
tition. Data on tracking and non-tracking (performance) 
factors are shown in Table 2.  

A total of 29 time-loss injuries were recorded 
throughout the study, involving 11 players, and accounting 
for 244 total missed games (MG) with a mean ± SD of 
16.26 ± 15.21 per player and season. Of these, nine were in 
season 1, five were in season 2, and 15 were in the third 
season (Table 3).  

 
Table 2. List and descriptive statistics of physiological and mechanical load, speed and distance, locomotor and performance 
variables. 

Variables Mean SD Minimum P25 Median P75 Maximum 
Minutes 22.6 10.6 0.1 14.7 22.9 31.9 48.6 
Phy_Load 740.6 354.3 0.9 479.4 739.2 1025.2 1613.4 
Phy_Int 32.8 4.2 2.4 30.5 33 35.6 55.4 
Mech_load 811.4 364.7 1.5 547 833.5 1113 1698.5 
Mech_Int 36.7 4.5 3.9 33.9 36 38.8 64.9 
Distance 1.6 0.7 0 1.1 1.6 2.2 3.4 
Walk_Max 3.6 0.2 2.5 3.6 3.6 3.7 4.1 
Run_Max 10.9 0.6 7.6 10.7 10.9 11.2 12.3 
Sprint_Max 14.5 0.8 10.1 14.3 14.6 15 16.3 
Max_Max 18.1 1.0 12.7 17.9 18.2 18.7 20.4 
Off.Average Speed 4.5 0.4 0 4.3 4.5 4.7 12.9 
Def.Average_Speed 3.9 0.5 0 3.7 3.9 4.1 16.7 
Acc_1 233.4 111.5 0 152.0 233.0 324.5 561.0 
Acc_2 79.4 39.1 0 50.0 79.0 110.0 194.0 
Acc_3 14.5 7.7 0 9.0 14.0 20.0 54.0 
Acc_4 0.7 1.0 0 0 0 1.0 6.0 
Dec_1 153.0 72.8 1.0 99.0 153.0 210.0 364.0 
Dec_2 103.6 46.7 0 70.0 107.0 141.0 223.0 
Dec_3 6.5 4.1 0 4.0 6.0 9.0 29.0 
Dec_4 0.3 0.6 0 0 0 0 4.0 
PER 14.8 11.8 -41.4 7.7 14.7 21.6 210.8 
Usg% 18 8.1 0 12.7 17.9 22.8 116.4 

Minutes: minutes played; Phy_Load: physiological load; Phy_Int: physiological intensity; Mech_Load: mechanical load; Mech_Int: me-
chanical intensity; Distance: distance; WALK_MAX: walk maximal speed; RUN_MAX: run maximal speed; SPRINT_MAX: sprint max-
imal speed; MAX_MAX: maximal speed; Off_Average_speed: offensive average speed; Def_Average_Speed: defensive average speed; 
Accel_1: level one acceleration; Accel_2: level two acceleration; Accel_3: level three acceleration; Accel_4: level four acceleration; De-
cel_1: level one deceleration; Decel_2: level two deceleration; Decel_3: level three deceleration; Decel_4: level four deceleration ; PER: 
player efficiency rating; Usg%: usage percentage.  

                                            
                                 Table 3.  Injury frequency by the different demographic variables studied.   

 
 

Injuries
 All No Yes 
     Variables N = 2577 N = 2548 % N = 29 % 
Season     Season 1  856 847 98.9 9 1.1 
     Season 2 890 885 99.4 5 0.6 
     Season 3 831 816 98.2 15 1.8 
Month     October 90 89 98.9 1 1.1 
     November 480 475 99 5 1 
     December 475 466 98.1 9 1.9 
     January 474 470 99.2 4 0.8 
     February 371 368 99.2 3 0.8 
     March  507 500 98.6 7 1.4 
     April 180 180 100 0 0 
Age     <25  1582 1568 98.7 20 1.3 
     25-27 520 515 99 5 1 
     >27 469 465 99.1 4 0.9 
Court     Home 1290 1275 98.9 15 1.2 
     Road 1287 1273 98.9 14 1.1 
Win game     No 1227 1211 98.7 16 1.3 
     Yes 1350 1337 99 13 1 
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Table 4. Multivariate analysis using the generalized linear mixed model for predictors of injuries in professional 
basketball players. This model includes minutes as an offset, and player as a random effect. 

Variables Estimate SE IRR (95% CI) p-value 
Intercept -9.58 0.64  < 0.001 
Deceleration_3 <3 1.47 0.45   4.36 (1.78-10.6) 0.0012 
Distance  1.3 1.86 0.47   6.42 (2.52-16.3) < 0.001 
Variance of random effect (player) 2.01    

                               SE: standard error; IRR: Incidence rate ratio 

 
Table 5.  A classification confusion matrix for the model. 

  Observed  

   No Injured Injured 

Predicted 
No injured 2287 12 

Injured 261 17 
 
The multivariate analysis using the GLMM for risk 

factors of injuries in professional basketball is shown in 
Table 4. The variables that remained significantly associ-
ated with risk of injury in the final model were a lower 
number of decelerations and less distance (Table 4). The 
player-level variance was 2.01. Based on RMSE and MAE 
values, the calibration model (0.10 and 0.02, respectively) 
was similar to the measure of the validation model (0.10 
and 0.01). Given that these measures are comparable, we 
can conclude that there is no overfitting. The AUC value 
of the model showed a satisfactory performance (AUC: 
0.84; 95% CI: 0.77 - 0.91), exhibiting reasonable to good 
discrimination.  Table 5 illustrates the classification confu-
sion matrix. As can be seen, the percentage of instances 
well classified was (2287+17)/2548 = 90.42%, where no-
injuries are classified as acceptable. However, a low injury 
rate causes sensitivity to drop to lower values (58%). 
 
Discussion 
 
The present study investigated the relationship between 
tracking and non-tracking (performance) data and injuries 
in professional basketball. The main finding of this study 
was that a lower number of decelerations and less distance 
covered were significantly associated with injury during 
professional basketball games. 

Related to external load (Mendez-Villanueva, 2013; 
Soligard et al., 2017) a few of the variables analyzed here 
were strongly related to injury (Ullah et al., 2012) on com-
petition (Carling et al., 2012; Cross et al., 2016; Hulin et 
al., 2016; Murphy et al., 2012; Talukder et al., 2016), the 
variables that were significant in the multivariate analysis 
are quantitative. However, the correct interpretation of the 
statistical analysis has to be done in a multifactorial dimen-
sion (Carey et al., 2016; Colby et al., 2017; Ullah et al., 
2012) and consider correlated data. The strength of the 
model is the association established within the variables 
presented. It takes into account variability of players and 
minutes played (used as an offset in the model). Accelera-
tion and decelerations are two of the main variables that 
define basketball (Abdelkrim et al., 2007; Chaouachi et al., 
2009; Maymin, 2013; Scanlan et al., 2014). Third level de-
celerations were found to be a risk factor: players who 
achieved fewer than three decelerations, and covered less 
than 1.3 miles were at higher risk of injury. Players under-
going lower workloads had a higher risk of injury than the 
rest of the roster (Gabbett, 2016; Blanch and Gabbett, 

2016; Gabbett and Jenkins, 2011). Our findings of lower 
workloads increasing the risk of injury agree with recent 
findings. Despite the fact that many previous studies have 
analyzed the impact in the number of injuries of excessive 
training loads imposed on players (Caparros et al., 2016, 
Gabbett and Ullah, 2012) the protective effect of proper 
load management, as well as an adverse effect of exces-
sively diminished training loads, have also been observed 
in the past (Gabbett, 2016). Adequate levels of training 
might have a protective effect on the athlete, also decreas-
ing their risk of injury. The development of a minimum 
amount of chronic quantitative workload (distance) and 
acute qualitative workload (decelerations) seems an im-
portant factor to prevent injuries (Talukder et al., 2016; 
Soligard et al., 2017). Regarding intensities as a risk factor, 
a minimum amount of high-intensity decelerations per 
game are needed to keep the player on optimal perfor-
mance (Gabbett, 2016). It might be argued that its total 
number can be related to the minutes that a player is on the 
court during the game. However, the capability to maintain 
higher intensities might be associated with other factors as 
readiness, performance, freshness, fatigue (Soligard et al., 
2017) or the opponents match up. A player can achieve ac-
celerations (Schelling and Torres, 2016), but the risk factor 
might be related to its capability to decelerate at higher in-
tensities, and to how player’s muscles can recover from 
those repeated efforts. Regarding speed parameters, same 
conclusions are described using GPS technology (  Gabbett 
et al., 2013; Rossi et al., 2017).  

Failure to perform high-intensity decelerations, to 
provide the players with a minimum cumulative distance, 
or to achieve adequate in-game or between-games recovery 
increases the chances of injury. Workload between-games 
(Gabbett, 2011; 2016; Gabbet et al., 2013; Purdam et al., 
2015; Scanlan et al., 2014) could also be managed with this 
model. According to previously accumulated workloads, 
this value allows the modification of individual training 
plans on two main areas: on-court practices and strength 
and conditioning workouts. According to the tracking data, 
deceleration thresholds can be customized on the accel-
erometer software, having the option to manage distance 
and decelerations during practices. By the other hand, to 
identify the role of decelerations as a risk factor (as eccen-
tric muscle action) (Hydahl and Hubal, 2014), highlights 
the importance of strength workouts (Pull and Ranson, 
2007) and neuromuscular recovery (Hyldahl and Hubal, 
2014)  and  its control (Mooney et al., 2013) as preventive 
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tools.   
In most sports, players are not involved in more than 

two games per week. However, in the professional basket-
ball competitions observed in this study, an average of 3.4 
matches were played per week for 24 weeks (Teremoto et 
al., 2016; Podlog et al., 2015). Therefore, the right man-
agement of player workloads is a critical strategy to avoid 
injuries (Drew and Finch, 2016; Gabbett, 2011; 2016) at 
specific periods of the season (Ferioli et al., 2018; Windt et 
al., 2017), and according to individual profiles. For certain 
players, increasing their participation in the competition is 
needed (Carey et al., 2016), or they may have higher 
chances of injury later during critical stages of the season. 
Acute workloads have to be specifically considered ac-
cording to the players’ age (Gabbett, 2016) and the period 
of the season. “Spikes” in workload, which are sometimes 
unavoidable, should be carefully controlled using individ-
ualized recovery protocols (Bengtsoon et al., 2013; Gab-
bett and Ullah, 2012; Hulin et al., 2013).  

Decelerations are related to the ability to change di-
rection (Tous-Fajardo et al., 2016) and are more unpredict-
able because they are related to opponents’ matchups.  A 
decrease in the number of decelerations can be used to 
identify fatigue (Lorenz and Reiman, 2011), especially in 
periods of accumulation of high chronic workload. A low 
number of them can be related to strength imbalance, and 
non-safe force values (Croisier et al., 2008). 

Finally, at present no variables could be related to 
performance. Future studies investigating the relationship 
between player performance metrics and the overall team 
performance (wins or losses) are warranted. 
 
Limitations of the study 
The present study has some limitations. First, all data were 
obtained from public open-acces resources, potentially 
limiting the external validity of the results. Therefore, stud-
ies with the involvement of data coming from professional 
teams are needed. Second, tracking and non-tracking data 
were obtained during games. Data from practice sessions 
should be incorporated to adequately apply in-season 
workload plans, as suggested by Carey et al. (2017). It 
might offer a cause-effect relationship that could be poten-
tially established between workload and injury on experi-
mental designs. This limitation needs to be highlighted 
from the results obtained in our study. The present is an 
observational study; it is not an experimental design. In ex-
perimental designs, we can control factors and, thus, con-
clusions could establish causality, but in our current con-
text, this is not possible.  Regarding the validity of the 
model built, we can observe a similar strong performance 
metrics (AUC = 0.85) in other basketball studies (Talukder 
et al., 2016), even if not based on tracking parameters. Re-
cent research on these specific parameters (Carey et al., 
2017) offers similar model performance (AUC = 0.84), 
even is related to Australian football. Therefore, this model 
identifies risk factors but some limitations are suggested in 
a predictive level. This fact is probably due to a low injury 
rate and the lack of better injury definition. However, our 
effort tries to achieve a deeper understanding of injury pre-
diction to several other recent studies (Bahr 2016; Carey et 
al., 2017;  Fanchini et al., 2018; Hewett, 2017; Jovanovic,  

2017; Rossi et al., 2017). 
The strengths of this study are its specificity for pro-

fessional basketball and the fact that it used well-estab-
lished technology to identify risk factors for injury (Foster 
et al., 2017). However, use and applicability of technology 
is in some aspects sports-specific (Bangsboo et al., 2006; 
Gabbett and Jenkins, 2011; Hagglund et al., 2010; Hopkins 
et al., 2009; Hugues and Franks, 2004). Therefore, conclu-
sions from technology-based investigations should take 
into account the context in which the research is conducted 
(Fuller, 2007; Ullah et al., 2012). Regarding methodology, 
a positive aspect of this study is that the model used 
(GLMM) tries to control for repeated measures (correlated 
data among the same players). Ignoring correlation of data 
when fitting the model may lead to biased estimates and 
misinterpretation of results (Casals, 2015). The study high-
lights the need for a correct balance between competitive 
schedule, team workload design and in-season recovery 
process. Further research should be conducted to determine 
how internal and external factors may be related to injury 
risk and performance. 
 
Practical applications 
Tracking systems, which can be easily incorporated into 
regular practice sessions and games, can provide useful in-
formation for the coaching staff to prevent injuries to pro-
fessional basketball players. Athletes with lower external 
workload should be identified so that appropriate preven-
tion strategies can be individually applied to avoid injuries.  

 
Conclusions 
 
Unloaded players, regarding the number of decelerations 
and total distance covered, have a greater risk of injury. In-
creasing external workload may likely reduce the risk of 
injury in professional basketball. More studies are needed 
to confirm these findings so that adequate prevention pro-
grams can be implemented to decrease the number of inju-
ries in professional basketball and other sports. 
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Key points 
 
 The number of decelerations and the total distance can 

be considered risk factors for injuries in professional 
basketball players.  

 Unloaded players have greater risk of injury com-
pared to players with higher accumulated external 
workload. 

 Workload management should be considered a major 
factor in injury prevention programs. 
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