
©Journal of Sports Science and Medicine (2011) 10, 546-552 
http://www.jssm.org 

 

 
Received: 18 April 2011 / Accepted: 20 July 2011 / Published (online): 01 September 2011 
 

 

 
 

 
 

VO2 off transient kinetics in extreme intensity swimming 
 
Ana Sousa 1, Pedro Figueiredo 1, Kari L. Keskinen 2, Ferran A. Rodríguez 3, Leandro Machado 1, João 
P. Vilas-Boas 1, Ricardo J. Fernandes 1  
1 Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Portugal,   
2 Finnish Society of Sport Sciences, Finland, 3 National Institute of Physical Education of Catalonia (INEFC), Univer-
sity of Barcelona, Barcelona, Spain 
 

 
Abstract  
Inconsistencies about dynamic asymmetry between the on- and 
off-transient responses in oxygen uptake are found in the litera-
ture. Therefore, the purpose of this study was to characterize the 
oxygen uptake off-transient kinetics during a maximal 200-m 
front crawl effort, as examining the degree to which the on/off 
regularity of the oxygen uptake kinetics response was preserved. 
Eight high level male swimmers performed a 200-m front crawl 
at maximal speed during which oxygen uptake was directly 
measured through breath-by-breath oxymetry (averaged every 5 
s). This apparatus was connected to the swimmer by a low hy-
drodynamic resistance respiratory snorkel and valve system. 
Results: The on- and off-transient phases were symmetrical in 
shape (mirror image) once they were adequately fitted by a 
single-exponential regression models, and no slow component 
for the oxygen uptake response was developed. Mean (± SD) 
peak oxygen uptake was 69.0 (± 6.3) mL·kg-1·min-1, signifi-
cantly correlated with time constant of the off-transient period (r 
= 0.76, p < 0.05) but not with any of the other oxygen off-
transient kinetic parameters studied. A direct relationship be-
tween time constant of the off-transient period and mean swim-
ming speed of the 200-m (r = 0.77, p < 0.05), and with the am-
plitude of the fast component of the effort period (r = 0.72, p < 
0.05) were observed. The mean amplitude and time constant of 
the off-transient period values were significantly greater than the 
respective on-transient. In conclusion, although an asymmetry 
between the on- and off kinetic parameters was verified, both 
the 200-m effort and the respectively recovery period were 
better characterized by a single exponential regression model. 
 
Key words: Swimming, oxygen uptake kinetics, recovery, front 
crawl. 
 

 

 
Introduction 

 
Oxygen uptake (VO2) kinetics has been analyzed through 
mathematical modeling of the constant-load exercise 
onset and offset VO2 response. This response profile ap-
pears to be of an exponential nature, which could indicate 
first or second order kinetics operations (DiMenna and 
Jones, 2009). This analysis has shown that VO2 exponen-
tially increases at the onset of moderate exercise with 
constant power output (on-fast component), reaches a 
steady state, and rapidly decreases at the offset of moder-
ate exercise (off-fast component) (Kilding et al., 2006; 
Ozyener et al., 2001; Paterson and Whipp, 1991; Scheu-
ermann et al., 2001). First-order kinetics mandates on/off 
symmetry, which means that the change in VO2 occurring 
when the contractile activity is ceased must be a mirror 
image of that which occurred when it was commenced 

(Rossiter et al., 2005). In the heavy intensity exercise, i.e., 
at intensities greater than the anaerobic threshold but 
below the maximal VO2, an delayed increase (on-slow 
component) after the on-fast component is presented 
(Barstow and Molé, 1991; Barstow et al., 1996; Ozyener 
et al., 2001; Paterson and Whipp, 1991; Scheuermann et 
al., 2001), but at the offset only an off-fast component is 
developed (Ozyener et al., 2001; Scheuermann et al., 
2001). At the severe exercise intensity, which is signifi-
cantly above the anaerobic threshold, and neither VO2 nor 
blood lactate levels can be stabilized (Poole et al., 1988), 
the on-transient VO2 kinetics is reverted to a single-
exponential profile (Ozyener et al., 2001), while the off-
transient kinetics is retained for a two-component form 
(Dupond et al., 2010; Ozyener et al., 2001). At the highest 
intensity - extreme exercise leading to exhaustion before 
maximal oxygen uptake is attained (DiMenna and Jones, 
2009; Hill et al., 2002) - , the VO2 on-kinetics response is 
characterized by the development of an evident fast com-
ponent, being the slow component phenomenon not de-
veloped (Burnley and Jones, 2007; Figueiredo et al., 
2011; Whipp, 1994). This area of intensity was recently 
described (Hill et al., 2002), and, to the best of our 
knowledge, the VO2 off- kinetic profile has never been 
studied at this particular intensity.  

VO2 assessment has been carried out mainly in well 
controlled environments, particularly in exercise laborato-
ries, and the number of studies conducted in field is very 
scarce (Billat et al., 2002; Fernandes et al., 2008). In fact, 
the VO2 off-transient kinetics is documented in constant-
load exercise performed from the moderate to severe 
intensities. Nevertheless, studies that aim to model the 
VO2 recovery kinetics at extreme intensity exercise were 
not yet conducted in swimming. In this sense, the purpose 
of this study is to characterize the VO2 off-transient kinet-
ics, examining also the on/off symmetry, during a 200-m 
front crawl maximal effort performed at extreme inten-
sity. It was hypothesized that an on/off symmetry of the 
VO2 kinetics response would be preserved, although the 
post-exercise VO2 did not match the O2 deficit.  
 
Methods 
 
Participants 
Eight highly trained male swimmers volunteered to par-
ticipate in the study. The participants provided informed 
written consent before data collection, which was ap-
proved by the local ethics committee and was performed 
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according to the declaration of Helsinki. Their mean per-
formance for long course 200-m freestyle was 109.3 ± 2.0 
s, corresponding to 90.3 ± 3.2% of the 2009 world record 
for this event. This sample included a finalist and five 
participants at the European Championships. Individual 
and mean (± SD) values for subjects’ main physical and 
performance characteristics were: age (21.8 ± 2.4 years), 
height (184.5 ± 6.2 cm), body mass (76.1 ± 6.5 kg), fat 
mass (10.4 ± 1.7%) and lean body mass (62.4 ± 4.4%). 

 
Data collection 
In an indoor 25-m swimming pool, with a water tempera-
ture of 27ºC, each swimmer performed a 200-m front 
crawl effort at maximal speed. In water starts and open 
turns, without underwater gliding, were used. Each 
swimmer performed a 200-m front crawl maximal effort, 
according to his best individual 200-m performance and 
his own experiences, and was encouraged to swim at his 
best effort; therefore, no visual or acoustic pacing was 
implemented. VO2 kinetics was measured using a telemet-
ric portable gas analyzer (K4b2, Cosmed, Italy), which 
was connected to the swimmer by a low hydrodynamic 
resistance respiratory snorkel and valve system (Keskinen 
et al., 2003; Rodriguez et al., 2008), and was calibrated 
before and after each test.  Respiratory variables were 
continuously monitored after the 200-m effort until base-
line VO2 values were obtained (after approximately 12 
min of recovery the assessment was ended). Swimmers 
were advised to use continuous rhythmical breathing 
during swimming, turning and in the recovery period. 
Expired gas concentrations were measured breath-by-
breath and averaged every 5 s for a better temporal resolu-
tion (Sousa et al., 2010) in order to reduce inter breath 
fluctuations (“noise”). Peak oxygen uptake (VO2peak) was 
considered as the highest value of this sampling interval.  

 
Data analysis 
The following equation was used to fit VO2 kinetics on 
the on-transient period:  
 

b2 V(t)OV && = ( )onon )/τTD(t
on e1A −−−×+                                (1) 

 
where t is the time, Vb is the oxygen uptake at the start of the exer-
cise (mL·kg-1·min-1), Aon is the amplitude of the fast component 
(mL·kg-1·min-1), TDon is the time for the onset of the fast component 
(s) and τon stands for the time constant of the fast component, i.e., 
the time to reach 63% of the plateau of this phase during which 
physiological adaptations adjust to meet the increased metabolic 
demand. The cardiodynamic phase was not taken into considera-
tion due to its amplitude insignificant value. The inexistence of a 
slow component was confirmed by the rigid intervals method, par-
ticularly by the difference between the last VO2 measurement of the 
exercise and the value measured in the final 5 s of the 200-m event 
(adapted from Fernandes et al., 2003; Koppo and Bouckaert, 
2002). 
 

For the off-transient period, the individual re-
sponses were fitted by using both a single (equation 2) 
and a double exponential (equation 3) regression models 
for the entire recovery period, in which the exponential 
term started at the beginning of the off-transient period 
modeling (TD1off in the equations):  
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where t is the time, Aoff represents the amplitude for the exponen-
tial term and the τoff and TDoff are the associated time constant and 
time delay. A nonlinear least squares method was implemented in 
MatLab for the adjustment of these functions to VO2 data.  
 

After a visual exploratory inspection of all VO2 
curves, and for the sake of numerical stability, it was 
verified that, due to the extreme exercise intensity in 
which the 200-m held, all swimmers started the recovery 
period immediately after the 200-m effort. In this sense 
and assuming that TD1off=0, the off-transient period was 
modeled according to the restructure equations:  
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Statistical analysis 
For the entire sample, mean and SD computations for 
descriptive analysis were obtained for all variables and for 
the entire group of subjects, and were checked for distri-
bution normality with the Shapiro-Wilk test. All statistical 
procedures were conducted with SPSS 10.05. An F-test 
was used to compare the single and double exponential 
regression models best fitting. To compare on- and off-
transient parameters Paired sample T-tests were used. 
Simple linear regression and Pearson’s correlation coeffi-
cient were computed to indicate the linear relationship 
between parameters and with swimming time. The level 
of significance was set at p < 0.05.  
 
Results 
 
The F-test (0.28) showed the homogeneity of both models 
variances, confirmed also by the equality of their mean 
values (p=0.98), and therefore, the off-transient response 
was well described by a single exponential function. In 
fact, this characterization was not improved by using the 
double exponential model. In this sense, the on- and off-
transient periods are symmetrical in shape (mirror image) 
once they were adequately fitted by single-exponential 
functions. An example of the oxygen (O2) uptake on and 
off kinetics curve is shown in Figure 1. 

The mean (± SD) values for swimming speed 
(200speed), VO2peak, Aon, TDon, τon and Aoff and τoff for the 
200-m front crawl effort and recovery period are pre-
sented in Table 1.  
Significant differences were obtained between the on- and 
off- VO2 kinetic parameters (all for p<0.01), and its am-
plitude was higher in the recovery period. Complementar-
ily to the above referred data, direct relationships were 
observed between τoff and 200speed (r = 0.77, p = 0.02), τoff 
and VO2peak (r = 0.76, p = 0.03) and τoff and Aon (r = 0.72, 
p = 0.04) (see Figure 2). No significant correlations were 
found between VO2peak and the other VO2 off-transient 
parameters (Aoff, r = 0.35, for p > 0.05). The absences of 
significant relationships were also observed between τon 

and τoff  (r = 0.19) and Aon and Aoff (r = 0.5), all with p > 
0.05.  
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Figure 1. Example of an oxygen consumption to time curve, being the time of the onset of the fast component (TDon), the time 
constant of the fast component (τon) and the amplitude of the fast component (Aon) in the on-transient and off-transient (τoff, 
Aoff) periods identified. 

 
Discussion 
 
The aim of this study was to characterize the VO2 off-
transient kinetics and to examine the on/off symmetry 
during a self-imposed 200-m swimming at race pace. We 
tested the hypothesis that the VO2 kinetics response will 
manifest a symmetric on/off response, even if the post-
exercise VO2 does not match the O2 deficit.  

An understanding of the VO2 kinetics is considered 
an important parameter to improve sports training meth-
odology and increase performance in sport (Billat et al., 
2001). Furthermore, it was recently suggested that the 
determinants of exercise tolerance and the limitations to 
sports performance can be better understood through an 
appreciation of the physiological significance of the fast 
and slow components of the dynamic VO2 response to 
exercise (Burnley and Jones, 2007). For a long time, stud-
ies regarding O2 uptake assessment in swimming were 
conducted with either Douglas bags (di Prampero et al., 
1974; Lavoie and Montpetit, 1986) or mixing chamber 

gas analyzers (Dal Monte et al., 1994; Demarie et al., 
2001). It was only recently that the development of a 
swimming snorkel suitable for breath-by-breath analysis 
(Keskinen et al., 2003; Rodríguez et al., 2008) allowed 
assessing VO2 dynamics in swimming pool conditions 
through direct oxymetry (Fernandes et al., 2003; Rodri-
guez et al., 2003). Nevertheless, in the O2 uptake kinetics 
related literature, studies that aimed to characterize it in 
human non-constant load extreme intensity exercises are 
very scarce. Moreover, among these studies, only Rodri-
guez and Mader (2003), Rodriguez et al. (2003), and Silva 
et al. (2006) implemented a swimming effort at intensities 
similar to our protocol. 
Considering the total sample, VO2peak ranged from 60.2 to 
81.8 ml·kg-1·min-1, which is in accordance with recently 
reported data obtained in trained male competitive swim-
mers performing during swimming in pool conditions 
(Fernandes et al., 2008; Figueiredo et al., 2011; Reis et 
al., 2010; Rodríguez and Mader, 2003; Rodríguez et al., 
2003; Silva et al., 2006). 

 
Table 1. Individual, mean (± SD) values, coefficient of variation and confidence interval for mean for 200speed, VO2peak, Aon, 
TDon and τon, Aoff and τoff in the 200-m maximal effort and recovery period. 

Swimmer 200speed 
(m·s-1) 

VO2peak 
 (mL·kg-1·min-1) 

Aon  
(mL·kg-1·min-1)

TDon 
(s) 

τon 
(s) 

Aoff 
(mL·kg-1·min-1) 

τoff 
(s) 

#1 1.40 68.4 49.6 10.00 6.21 54.4 62.22 
#2 1.36 60.2 38.6 4.99 12.04 41.2 49.38 
#3 1.44 67.4 44.9 3.98 13.28 41.5 55.14 
#4 1.42 70.7 44.5 4.99 9.31 54.8 73.13 
#5 1.49 81.8 52.0 5.00 12.43 50.1 94.04 
#6 1.42 70.1 45.4 4.99 11.56 49.3 84.36 
#7 1.42 63.7 46.9 4.99 9.17 42.2 73.90 
#8 1.47 69.0 50.2 4.99 13.41 62.3 86.23 

  Mean (±SD) 1.42 (.04) 69.0 (6.3) 46.5 (4.2) 5.49 (1.85) 10.92 (2.49) 49.5 (7.56) 72.30(15.75)
CV mean 2.81% 9.13% 9.05% 33.69% 22.84% 15.27% 21.78% 

CI mean 1.39-1.46 63.7-74.3 43.0-50.0 3.93-7.04 8.84-13.01 43.2-55.8 59.13-85.46
200speed = mean swimming speed of the 200-m; VO2peak = peak oxygen uptake; Aon = amplitude of the fast component in the 200-m 
maximal effort; TDon = time of the onset of the fast component in the 200-m maximal effort; τon = time constant of the fast component in 
the 200-m maximal effort; Aoff = amplitude of the fast component in the 200-m recovery period; τoff = time constant of the fast compo-
nent in the 200-m recovery period; CV = coefficient of variation; CI = confidence interval. 
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Figure 2. Relationships between the time constant of the fast component of the recovery period (τoff) and the mean 
swimming speed of the 200-m (200speed - full line: y =1.284x + 0.002, n = 8, r = 0.77, p < 0.05), between τoff and peak oxy-
gen uptake (VO2peak - dotted line: y = 46.975x + 0.305, n = 8, r = 0.76, p < 0.05) and between τoff and the amplitude of the 
fast component of the effort period (Aon - grey line: y= 32.594x + 0.192, n = 8, r = 0.72, p < 0.05). 

 
Symmetry between the on- and off-transient phas-

es: Since symmetry is an essential quality of VO2 kinetic 
dynamics viewed as a first-order reaction kinetics (Ros-
siter et al., 2005), it was a focus of interest in the present 
study. The on/off symmetry of the fast components has 
been observed for the moderate intensity exercise domain 
performed in cycle ergometer (Paterson and Whipp, 1991; 
Ozyener et al., 2001; Scheuermann et al., 2001) and 
treadmill running (Kilding et al., 2006). For the heavy 
intensity exercise, an asymmetry in the VO2 dynamics has 
been reported, describing an on-fast component and an 
off-fast and off-slow components at cycle ergometer  
(Ozyener et al., 2001) and knee extensor exercise (Ros-
siter et al., 2002). This asymmetry was also reported for 
severe exercise intensity, namely in indoor running (Du-
pond et al., 2010) and cycle ergometer (Ozyener et al., 
2001). In contrast, in the present study the on- and off-
transient phases were symmetrical, once they were ade-
quately fitted by a single exponential function, compared 
to the double exponential one, and no slow component for 
the VO2 response was developed (see Figure 1). Nonethe-
less the above referred studies, the symmetry observed in 
the present study can be explained by the implementation 
of a non-constant load, and to the greater exercise inten-
sity. As expected, we observed only an on-fast compo-
nent, since the non-constant load at freely-chosen maxi-
mal race pace induced an exponential rise in VO2 kinetics 
that unable the development of a VO2 slow component; 
this fact was previously mentioned but only for ergometer 
exercise (Burnley and Jones, 2007; Whipp, 1994).  

On/off kinetic parameters: Although an on/off 
symmetry in the VO2 kinetic response was observed in 
this extreme intensity exercise lasting 2.7 min on average, 
differences between the VO2 on- and off-transient kinetic 
parameters were observed. In fact, greater Aoff and τoff 
values are reported. This last parameter is a major focus 
of interest in the VO2 kinetic related literature, once it is a 
determinant factor in VO2 dynamics. A longer τoff value, 

as observed in this study, concur with previous data ob-
tained in the heavy exercise domain (Cleuziou et al., 
2004; Yano et al., 2007); however, other studies reported 
the opposite behavior for the same exercise intensity 
(Engelen et al., 1996; Ozyener et al., 2001; Scheuermann 
et al., 2001), as well as for the moderate domain (Patter-
son and Whipp, 1991). At the severe exercise intensity, 
Billat et al. (2002) and Ozyener et al. (2001) reported no 
differences in τ  regarding on and off fast periods. In addi-
tion, the obtained τoff mean value was greater than the 
results reported in the literature for both moderate 
(Cleuziou et al., 2004; Kilding et al., 2006; Rossiter et al., 
2002; Takayoshi et al., 2003), heavy (Rossiter et al., 
2002) and severe intensities (Perrey et al., 2002).  

However, as suggest, when we compared our data 
with studies using a double exponential fitting approach, 
τoff was shorter comparing to τoff of the slow component 
during heavy (Cleuziou et al., 2004) and severe intensity 
exercise (Dupond et al., 2010). As previously stated, the 
present study reported a symmetry on the on/off VO2 
kinetic response; however differences between the on- 
and off- VO2 kinetic related parameters were found.  

In fact, VO2 kinetics is influenced by endurance 
training, being reported a faster VO2 on-kinetics in trained 
subjects involved both in cross-sectional and longitudinal 
studies (Casaburi et al., 1987; Koppo et al., 2004; Murias 
et al., 2010; Phillips et al., 1995). Indeed, training seems 
to change the muscle fiber-type characteristics, mitochon-
drial density, oxidative enzyme activity, oxygen availabil-
ity, capillary density and muscle perfusion (Koppo et al., 
2004), existing evident differences between trained and 
untrained subjects. Although this study did not have the 
intention to investigate this phenomenon, the mean 
swimming speed was very high since the onset of the 
effort, which may induced a faster increase in ATP re-
quirements, and a fast lactate accumulation, once a pattern 
of type I/II muscle fiber contribution seems to be estab-
lished without delay (Cunningham et al., 2000). These 
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facts (and being the off-set fast component explained by 
the restore of O2 in blood and in muscle, a significant 
lactate removal, and by the resynthesis of ATP and PCr) 
may induce discernible slower responses during the re-
covery period. Hence, the oxygen debt must be larger 
than the oxygen deficit, i.e., the post-exercise VO2 quanti-
tatively did not match the O2 deficit (Yano et al., 2007). In 
fact, since different pacing strategies were adopted during 
the maximal 200-m, different VO2 on kinetics may oc-
curred, which influenced the VO2 response in the recov-
ery period. This is a limitation of the current study com-
paring to constant pace researches.  

Regarding the VO2 amplitude, the greater observed 
Aoff mean value (comparing to Aon) is not in accordance 
with the results reported for moderate and heavy intensi-
ties (Cleuziou et al., 2004), and for the severe intensity 
exercise (Perrey et al., 2002), that showed no significant 
differences between the Aon and Aoff mean values. In our 
study, the greater values of Aoff may be a result of the 
extreme exercise intensity in which our study was con-
ducted, different modeling procedures that were used, as 
also mode of exercise performed. At this exercise inten-
sity, in which highest work rates are observed, the VO2 
mean value is high even until the end of the effort. Once 
the Aoff represents the difference between the VO2 at the 
end of the exercise and the steady state VO2, the greater 
Aoff mean value seems justified. 

Once the TDoff was assumed to be zero, in result of 
the sudden and instantaneous diminishing of VO2, com-
parisons with  previously reported data obtained for the 
moderate (Cleuziou et al., 2004) and heavy intensities 
domains (Billat et al., 2002) are difficult to establish. 
However, Takayoshi et al. (2003) reported low TDoff 
mean values (1, 2 s) for the moderate exercise intensity 
domain. Moreover, and contrasting the results of the pre-
sent study, Perrey et al. (2002) found no differences be-
tween the TDon and TDoff mean values at severe intensity.  

Relationship between VO2 kinetics on/off-transient 
phases and performance: The observed direct relationship 
between τoff and 200speed evidences that the swimmers 
who performed a faster 200-m, needed more time to at-
tained a VO2 steady state in the off-transient phase; in 
addition, these swimmers presented greater VO2peak and 
Aon mean values. These facts seem to evidence one more 
time that the very high swimming speed just after the 
beginning of the effort led to greater VO2peak and Aon 
mean values, increasing both the need for a higher energy 
supply and the accumulation of fatigue-related metabo-
lites, slowing the recovery phase. Indeed, the 200-m per-
formance is strongly related to the τoff, which seems to be 
also a good predictor of VO2peak and Aon. However, these 
data should be seen with precaution, once other factors 
might explain the performance variability in this specific 
distance.  

 
Conclusion 
 
No slow component for the VO2 off-kinetics was devel-
oped in the all-out 200-m swims, and the on and off-
transient phases were symmetrical once they were ade-
quately fitted by a single-exponential function. However, 

Aoff and τoff mean values were greater comparing to the 
respective on-transients parameters. The VO2peak and 
200speed mean values positively correlated with τoff, as this 
with Aon, not being observed any more correlations be-
tween any of the studied on/off-transient kinetic parame-
ters.  Accepting that the overall understanding of the VO2 kinetics implies the address of other research areas, future 
experiments are welcome to understand the underlying 
mechanism regarding this VO2 dynamic behavior. 
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Key points 
 
• The VO2 slow component was not observed in the 

recovery period of swimming extreme efforts; 
• The on and off transient periods were better fitted by 

a single exponential function, and so, these effort 
and recovery periods of swimming extreme efforts 
are symmetrical; 

• The rate of VO2 decline during the recovery period 
may be due to not only the magnitude of oxygen 
debt but also the VO2peak obtained during the effort 
period. 
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