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ABSTRACT  
The objective of this paper is to use data from the highest level in men’s tennis to assess whether there is 
any evidence to reject the hypothesis that the two players in a match have a constant probability of 
winning each set in the match. The data consists of all 4883 matches of grand slam men’s singles over a 
10 year period from 1995 to 2004. Each match is categorised by its sequence of win (W) or loss (L) (in 
set 1, set 2, set 3,...) to the eventual winner. Thus, there are several categories of matches from WWW to 
LLWWW. The methodology involves fitting several probabilistic models to the frequencies of the above 
ten categories. One four-set category is observed to occur significantly more often than the other two. 
Correspondingly, a couple of the five-set categories occur more frequently than the others. This pattern is 
consistent when the data is split into two five-year subsets. The data provides significant statistical 
evidence that the probability of winning a set within a match varies from set to set. The data supports the 
conclusion that, at the highest level of men’s singles tennis, the better player (not necessarily the winner) 
lifts his play in certain situations at least some of the time. 
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INTRODUCTION 
 
Several authors have carried out probabilistic 
analyses of tennis (Carter and Crews, 1974; Miles, 
1984). A common assumption is that player A has a 
constant probability PA of winning a point on 
his/her service and that player B also has a constant 
probability PB of winning a point on service. Under 
this assumption and the assumption that points are 
independent, it can be shown that the better player 
does not always win and that each player has a 

constant probability of winning each set, no matter 
who serves first in the set (Pollard, 1983). Player A 
is the better player if PA is greater than PB. 

There is little published research on testing 
whether players do have constant probabilities on 
service, that points (and hence games and sets) are 
independent and identically distributed (iid). A ‘first 
game effect’ in a match, namely that fewer breaks 
occur in the first game of the match, has been 
identified (Magnus and Klaassen, 1999). However, 
it would appear that any non-iid effects such as the 
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‘hot-hand effect’ (in which winning a point, game 
or set increases ones chances of winning the next 
point, game or set) and the opposite effect, the 
‘back-to-the-wall effect’, are small when analyzing 
large data sets (Klaassen and Magnus, 2001). 

Many players believe, and commentators 
often state, that the winner of a set of tennis is not 
infrequently determined by merely a couple of 
points within that set. Given that a set lasts about 
(say) 60 points on average, and the couple of critical 
points can occur almost anywhere in the set, it 
would appear to be difficult to use statistical 
methods to identify a couple of non-iid points 
amongst approximately 60 other iid points. It would 
be like ‘searching for a needle in a haystack’. 

In this paper we focus on sets rather than 
points. If sets are not iid, it follows that points and 
games cannot be strictly iid, even if only a very 
small percentage of points contribute to the non-iid 
nature of the data. The data consists of ten years 
(1995 to 2004) of the four major annual 
tournaments for men’s singles. These tournaments 
are the Australian Open, the French Open, 
Wimbledon and the US Open, are known as the 
Grand Slam tournaments, and are played on 
different types of surfaces. Using W to represent a 
set won by the eventual winner of the match and L 
to represent a set lost by the eventual winner, there 
are several possible match categories from WWW 
to LLWWW. Each of the 4883 singles matches for 
this period were classified into the relevant 
categories, and the frequencies of the categories 
were analysed to check for lack of independence of 
set outcomes. 
 
METHODS 

 
Assuming without loss of generality that player A is 
the better player, the results of a best-of-five sets 
singles match can be recorded as WWW, WWLW, 
WLWW, LWWW, WWLLW, WLWLW, 
WLLWW, LWWLW, LWLWW, LLWWW, and 

LLL, LLWL, LWLL, WLLL, LLWWL, LWLWL, 
LWWLL, WLLWL, WLWLL and WWLLL where 
W represents a set won by player A, and L 
represents a set lost by player A. When we do not 
know who the better player is, a win in three sets for 
example (WWW or LLL above) is simply a win 
WWW to the winner of the match (not necessarily 
player A). Thus, when we do not know who the 
better player is, the above twenty outcomes reduce 
to the ten mutually exclusive outcomes WWW, 
WWLW, WLWW, LWWW, WWLLW, WLWLW, 
WLLWW, LWWLW, LWLWW and LLWWW 
where W represents a set won by the eventual 
winner of the match and L represents a set lost by 
the eventual winner. 

The data consisted of ten years of men’s 
singles grand slam results. There were 4883 
matches in total, and spurious data such as matches 
where one player ‘retired’ (presumably injured) 
before the match was finished were omitted. The 
number of matches in each of the above categories 
was: 

WWW            2330; WWLW            503; 
WLWW            487; LWWW            609; WWLLW         
151; WLWLW         135; WLLWW         186; 
LWWLW         138; LWLWW         156; LLWWW         
188 

The first model fitted involved a constant 
probability, p, of player A (the notionally or 
theoretically better player) winning each set. A 
short and simple search using a spreadsheet showed 
that the value of p which minimized Chi-Squared 
was 0.769, and the results are given in Table 1. For 
example, the expected value for the row WWW in 
Table 1 is 4883*(0.769*0.769*0.769 + 
0.231*0.231*0.231) = 2280.77, allowing for both a 
win and a loss by the theoretically better player. 

The value of Chi-Squared was 38.68 with 8 
degrees of freedom, so the fit is a poor one. This is 
not surprising as a constant p-value for all matches 
is clearly unrealistic. It can be seen from the Obs-
Exp column in Table 1 that there was a greater

                     
                     Table 1. Match outcomes when the probability player A wins each set is 0.769. 

Category Observed Expected Obs-Exp Chi-Squared 
WWW 2330 2280.77 49.23 1.06 
WWLW 503 559.24 -56.24 5.66 
WLWW 487 559.24 -72.24 9.33 
LWWW 609 559.24 49.76 4.43 
WWLLW 151 154.09 -3.09 .06 
WLWLW 135 154.09 -19.09 2.36 
WLLWW 186 154.09 31.91 6.61 
LWWLW 138 154.09 -16.09 1.68 
LWLWW 156 154.09 1.91 .02 
LLWWW 188 154.09 33.91 7.46 
Total 4883 4883 .00 38.68 
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Table 2. Set outcomes when player A has in half the matches a probability of 0.705 
of winning a set and in half the matches a probability of 0.833 of winning a set. 

Category Observed Expected Obs-Exp Chi-Squared 
WWW 2330 2340.77 -10.77 0.05 
WWLW 503 541.71 -38.71 2.77 
WLWW 487 541.71 -54.71 5.53 
LWWW 609 541.71 67.29 8.36 
WWLLW 151 152.85 -1.85 .02 
WLWLW 135 152.85 -17.85 2.08 
WLLWW 186 152.85 33.15 7.19 
LWWLW 138 152.85 -14.85 1.44 
LWLWW 156 152.85 3.15 .06 
LLWWW 188 152.85 35.15 8.08 
Total 4883 4883 .00 35.59 

 
number of three sets and five sets results observed 
than was expected under this model. Also, for the 
four sets matches, this model underestimated the 
number of LWWW matches, and overestimated the 
other two categories. Similarly, for the five sets 
matches, the model underestimated the number of 
WLLWW and LLWWW matches. 

In order to attempt to overcome the shortage 
of three and five sets matches expected under the 
above model, it was decided to model the data using 
two p values, one greater than 0.769 and the other 
less than it, and combine the results. The value 
greater than 0.769 would increase the proportion of 
three set matches, and the value less than 0.769 
would increase the proportion of five set matches. 
Thus, for simplicity, the data was modeled as 
consisting of 2 types of matches-‘close’ matches 
(with p less than 0.769) and ‘not-so-close’ matches 
(with p greater than 0.769). 

Half the matches were assumed to be ‘close’, 
and half ‘not-so-close’. Symmetric values about 
0.769, p1 and p2, were considered, and the two p 
values which minimized Chi-Squared were 
identified. These two values were p1 = 0.705 and p2 
= 0.833. The results for this model are given in 
Table 2. For example, the expected value for row 4 
(LWWW) of Table 2 is given by 4883(0.5*((1-
p1)*p1*p1*p1 + p1*(1-p1)*(1-p1)*(1-p1)) + 
0.5*((1-p2)*p2*p2*p2 + p2*(1-p2)*(1-p2)*(1-p2))) 
= 541.71, allowing for both a win and a loss by the 
theoretically better player. 

The value of Chi-Squared for this model was 
35.59 with 7 degrees of freedom, so the fit is again a 
poor one. Whilst this is a better fit with respect to 
the proportion of three and five set matches, the 
number of LWWW matches is still underestimated 
under this model, as is the number of WLLWW and 
LLWWW matches. 

It is noted here as an aside that if we remove 
the restriction that exactly half of the matches have 
a p-value of p1 and half of them have the value p2 

whilst keeping p1 = 0.705 and p2 = 0.833, a slightly 
smaller value of chi-squared can be obtained. The 
lowest Chi-Squared value obtained was 34.35 with 
6 degrees of freedom when the proportion of 
matches with p1 = 0.705 was 0.53, and the 
proportion of matches with p2 = 0.833 was 0.47. 
Thus, for this model (and indeed for the others 
considered in this paper), modifying the proportion 
of ‘close’ and ‘not-so-close’ matches had negligible 
effect on the Chi-Squared values. For this reason, 
no further reports on this modification are given in 
this paper. 

It can be seen from Table 2 that, under this 
model, the expected number of matches in each of 
the 3 four sets categories are equal. 
Correspondingly, the expected number of matches 
in each of the 6 five sets categories are also equal. It 
is clear that this characteristic remains true even if 
we fitted more (or even many many more!) than just 
two p values to the data. Further, it follows that if 
the p-value is constant for each set within each 
match (but possibly different for each of the 4883 
matches) the expected number of matches in each of 
the 3 four set categories would be equal, and that 
the expected number of matches in each of the 6 
five set categories would also be equal. It is possible 
to fit the best-fitting model to this data such that the 
3 four set categories have equal expected values and 
the 6 five set categories also have equal expected 
values. Note that this is simply a data fitting 
exercise, and that there is no assumed underlying p-
value(s) such as in the above analyses. When this is 
done, the expected values for the three, four and 
five set categories are 2322.2, 534.0, and 159.8 
respectively, and the Chi-Squared value is 33.17 
with 7 degrees of freedom. Again the fit is not a 
good one and we conclude that the p-values for each 
set (within each match) are not constant. 

It can be seen from Table 2 that the (Obs-
Exp) value was positive for the categories LWWW, 
WLLWW,    LWLWW     and    LLWWW.   These  
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Table 3. Match outcomes when p1 and p2 are 0.704 and 0.798 respectively, D1 = 
0.035 and D2 = 0.110. 

Category Observed Expected Obs-Exp Chi-Squared 
WWW 2330 2333.26 -3.26 .00 
WWLW 503 485.11 17.89 .66 
WLWW 487 497.52 -10.52 .22 
LWWW 609 607.47 1.53 .00 
WWLLW 151 159.08 -8.08 .41 
WLWLW 135 128.06 5.94 .27 
WLLWW 186 184.21 1.79 .02 
LWWLW 138 143.72 -5.72 .23 
LWLWW 156 156.89 -.89 .01 
LLWWW 188 186.68 1.32 .01 
Total 4883 4883 .00 1.83 

 
categories represent situations in which the winner 
(typically, but not always, the better player, player 
A) was behind (in sets) at some stage in the match. 
Thus, the data suggests that the better player might 
‘try harder’ or ‘lift his game’ in situations in which 
he is behind. In order to address this ‘trying harder 
when behind’ effect, it was assumed that player A 
lifted his probability of winning a set by D1 when 
he was behind in the set score. A closer look at the 
data also suggests that player A might be ‘on-a-roll’ 
when he has just won a set and as a consequence 
lifts his probability of winning the next set. In order 
to address this ‘on-a-roll’ effect, it was assumed that 
player A lifted his probability of winning a set by 
D1 when he won the previous set. The categories 
WLLWW and LLWWW noted above represent 
situations in which the winner (probably more often 
player A) lost two sets in a row. These are situations 
in which player A has a real need to make an extra 
special effort to lift his game. Thus, it was further 
assumed that player A lifted his probability of 
winning a set by an amount D2 (anticipated to be 
somewhat bigger than D1) for the remainder of the 
match immediately after having lost two sets in a 
row (there are 3 such match categories). It is for 
reasons of simplicity that the parsimonious model 
with only two lifted levels was tested. 

Given that p1 and p2 are increased by D1 or 
D2 in certain situations, it seemed appropriate, in 
order to get a reasonable overall fit, to lower both 
their ‘starting’ values (ie, those for set1) from those 
in Table 2. Given this, the notion of symmetric p-
values about 0.769 also seemed irrelevant. The 
values of p1 and p2, D1 and D2 which minimized 
Chi-Squared were p1 = 0.704 and p2 = 0.798, D1 = 
0.035 and D2 = 0.110, and the results are given in 
Table 3. For example, the expected value for the 
number of LLWWW matches is 4883 (0.5 * ((1-p1) 
* (1-p1-D1) * (p1+D2) * (p1+D2) * (p1+D2) + p1 * 
(p1+D1)  *  (1-p1-D1)  *  (1-p1)  *  (1-p1-D2))    +   

0.5 * ((1-p2) * (1-p2-D1) * (p2+D2) * (p2+D2) * 
(p2+D2) + p2 * (p2+D1) * (1-p2-D1) * (1-p2) * (1-
p2-D2))) = 186.68. 

The value of Chi-Squared was 1.83 with 5 
degrees of freedom, so the fit is a good one 
indicating that the model fits the data well. 
 
Table 4. Observed match outcomes for the periods 
1995-1999 and 2000-2004. 

Category 1995-1999 2000-2004 
WWW 1189 1141 
WWLW 242 261 
WLWW 240 247 
LWWW 304 305 
WWLLW 76 75 
WLWLW 66 69 
WLLWW 98 88 
LWWLW 67 71 
LWLWW 76 80 
LLWWW 90 98 
Total 2448 2435 

 
 
 

In order to carry out a simple check on the 
model, it was decided to break the data into two 
time periods (1995-1999 and 2000-2004), and check 
for consistency across the periods (Table 4). The 
above parameter values or estimates for p1, p2, D1 
and D2 based on the full 10 year period 1995 to 
2004 were used ‘as estimates’ for the period 1995 to 
1999 (2448 matches) and for the period 2000-2004 
(2435 matches). The fits were surprisingly good, 
with Chi-Squared values of 1.81 and 3.00 
respectively. ( It is clearly quite likely that lower 
values of Chi-Squared could be obtained by fitting 
p1, p2, D1 and D2 values specific to each period, 
but there is little point in doing this. 

There appeared to be no evidence in the data 
that the weaker player could lift his game in 
situations where it would have been useful for him 
to do so. 
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RESULTS 
 
The 4883 completed men’s singles matches at grand 
slam tournaments for the period 1995-2004 have 
been analysed to test the hypothesis that the 
probability of winning a set within a match is 
constant. This hypothesis was rejected. 

A model which fits the data well has been 
found. It is a model in which the better player lifts 
his probability of winning a set in certain situations. 
These situations are 

(i)when he is behind in the set score, needs 
to lift his game, and lifts his probability of 
winning the next set by (on average) 0.035, 

(ii)when he has just won a set, is ‘on-a-run’’, 
and lifts his probability of winning the next set 
by (on average) 0.035, and 

(iii)when he has just lost two sets in a row, 
desperately needs to lift his game, and lifts his 
probability of winning each remaining set by (on 
average) 0.110. 

 
DISCUSSION 

 
The results of this study are quite encouraging for 
the better player, but perhaps somewhat 
discouraging for the weaker player. The findings 
indicate that the weaker player needs to be ‘on his 
guard’ for a change in fortunes when the match is 
‘going well’ for him. 

The results of the analysis in this paper show 
that often the better player can increase his 
probability of winning a set by quite a substantial 
amount when it is really necessary to do so in order 
to reduce his probability of losing the match. A set 
can often be won rather than lost by winning just 
one, two, or a few particular important points 
(Morris, 1977). Thus, it would appear from the 
analysis in this paper that the better player is more 
able to lift his play on particularly important points 
than is the weaker player. 

Further studies might include whether 
women’s matches (although only best-of-three sets) 
have comparable characteristics or whether there 
are gender differences in this regard. 

It would appear that the methodology used in 
this paper has a range of sporting applications, 
particularly for the often occurring situation in 
which the better player or team does not always win 
a match, or the ‘best’ player or team does not 
always win a series of matches. Another area of 
application might be assessment in which the ‘best’ 
student (or persons being assessed) does not always 
come first. 

 
 

CONCLUSIONS 
 

The conclusion is that matches turn around in 
favour of the better player significantly more often 
than would be expected under the usual 
randomness/independence assumptions of 
probability. As each point is a ‘zero-sum’ situation 
for the two players, it is not strictly possible to tell 
from just the statistical records whether this ‘turn-
around’ characteristic is because the better player 
lifts his play or because the weaker player lowers 
his play. Nevertheless, it is useful for both players 
to know of the existence of this phenomenon as any 
player (except the best player in the world) should 
sometimes be the better player and sometimes the 
weaker on the court. The better player can take 
advantage of it, and the weaker player needs to 
guard against it. 
 
REFERENCES 
 
Carter, W. and Crews, S. (1974) An analysis of the game 

of tennis. The American Statistician. 28(4), 130-
134. 

Klaassen, F. and Magnus, J. (2001) Are points in tennis 
independent and identically distributed? Evidence 
from a dynamic binary panel data model. Journal 
of the American Statistical Association. 96, 500-
509. 

Magnus, J. and Klaassen, F. (1999) On the advantage of 
serving first in a tennis set: Four years at 
Wimbledon. The Statistician. 48, 247-256. 

Miles, R. (1984) Symmetric sequential analysis: the 
efficiencies of sports scoring systems (with 
particular reference to those of tennis). Journal of 
the Royal Statistical Society Series B. 46(1), 93-
108. 

Morris, C. (1977) The most important points in tennis. 
In: Optimal strategies in sports (Volume 5 in 
Studies in Management Science and Systems). 
Eds: Ladany, S. and Machol, R. Amsterdam: 
North-Holland. 131-140. 

Pollard, G. (1983) An analysis of classical and tie-break 
tennis. Australian Journal of Statistics. 25(3), 496-
505. 

 
AUTHORS BIOGRAPHY 

 
 

Graham POLLARD  
Employment 
Emeritus Professor, University of 
Canberra. 
Degree 
PhD in Statistics from the Australian 
National University. 
Research interests 
Probability applications in sports scoring 
systems and in assessment, optimal 
learning. 
E-mail: graham@foulsham.com.au 



An analysis of ten years of Grand Slam tennis data  
 
 

566

 

Rod CROSS  
Employment 
A/Prof, Sydney University 
Degrees 
PhD, B.Sc. Dip.Ed 
Research interests 
Physics of sport. 
E-mail: cross@physics.usyd.edu.au 

Denny MEYER 
Employment 
Senior lecturer, Swinburne University of 
Technology, Australia 
Degrees 
DBL, MBL, BSc(Hons) 
Research interests 
Sport Statistics, Time series analysis and 
data mining. 
E-mail: 
DMeyer@groupwise.swin.edu.au 

 
 
 
 
 
 
 
 
 

 
KEY POINTS 
 
• Using grand slam men’s singles data, the 

probability of winning a set has been shown to 
vary from set to set. 

• The data provides statistical evidence that the 
better player (not necessarily the winner) in 
some matches is able to lift his play in certain 
situations. This result gives encouragement to 
the better player when in difficulties in a match. 

• The authors found no evidence that the weaker 
player was able to lift his play. The weaker 
player, when ahead in a match, should be on his 
guard for his opponent to have a real capacity 
to lift his game. 
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