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ABSTRACT  
Studies to optimise take off angles for height or distance have usually involved either a time-consuming 
invasive approach of placing markers on the body in a laboratory setting or using even less efficient manual 
frame-by-frame joint angle calculations with one of the many sport science video analysis software tools 
available. This research introduces a computer-vision based, marker-free, real-time biomechanical analysis 
approach to optimise take-off angles based on speed, base of support and dynamically calculated joint 
angles and mass of body segments. The goal of a jump is usually for height, distance or rotation with 
consequent dependencies on speed and phase of joint angles, centre of mass COM) and base of support. 
First and second derivatives of joint angles and body part COMs are derived from a Continuous Human 
Movement Recognition (CHMR) system for kinematical and what-if calculations. Motion is automatically 
segmented using hierarchical Hidden Markov Models and 3D tracking is further stabilized by estimating 
the joint angles for the next frame using a forward smoothing Particle filter. The results from a study of 
jumps, leaps and summersaults supporting regular knowledge of results feedback during training sessions 
indicate that this approach is useful for optimising the height, distance or rotation of skills. 
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INTRODUCTION 
 
Sport skills are tracked and biomechanically 
analysed by either requiring athletes to wear joint 
markers/identifiers (an approach with has the 
disadvantage of significant set up time) or manually 
marking up video frame-by-frame. Such complex 
and time consuming approaches to tracking and 
analysis is an impediment to daily use by coaches 
and has barely changed since it was developed in the 
1970s. Using a less invasive approach free of 
markers, computer vision research into tracking and 

recognizing full-body human motion has so far been 
mainly limited to gait or frontal posing (Moeslund 
and Granum, 2001). Various approaches for tracking 
the whole body have been proposed in the image 
processing literature using a variety of 2D and 3D 
body models. However cylindrical, quadratic and 
ellipsoidal (Drummond and Cipolla, 2001; 
Kakadiaris and Metaxas, 1996; Pentland and 
Horowitz, 1991; Wren et al., 1997) body models of 
previous studies do not contour accurately to the 
body, thus decreasing tracking stability. To 
overcome  this  problem,  in  this  research 3D clone- 
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Figure 1. Clone-body-model consisting of clone-body-parts which have a cylindrical 
coordinate system of surface points b() and up to three DOF for each joint linking the clone-
body-parts. Each surface point is a vector b with cylindrical coordinates (d,θ,r), colour (h,s,i), 
accuracy of radius (ar), accuracy of colour (ahsi), elasticity of radius (er). 

 
body-model regions are sized and texture mapped 
from each body part by extracting features during 
the initialisation phase (Cham and Rehg, 1999). This 
clone-body-model has a number of advantages over 
previous body models: 

It allows for a larger variation of somatotype 
(from ectomorph to endomorph), gender (cylindrical 
trunks do not allow for breasts or pregnancy) and 
age (from baby to adult). 

Exact sizing of clone-body-parts enables 
greater accuracy in tracking edges, rather than the 
nearest best fit of a cylinder. 

Texture mapping of clone-body-parts 
increases region tracking and orientation accuracy 
over the many other models which assume a uniform 
colour for each body part.  

Region patterns, such as the ear, elbow and 
knee patterns, assist in accurately fixing orientation 
of clone-body-parts. 

Neither joint markers nor manual frame-by-
frame mark-up provide volume and 3D centre-of-
mass (COM) estimates of a 3D body model – 
invaluable for 3D biomechanical analysis. In this 
study, joint angle velocities, together with the size 
and mass of body segments enabled more accurate 
optimisation of take-off angles supporting the goal 
of a jump whether for height, distance or rotation 
with  consequent  dependencies  on  phase  of   joint  

 

angles and base of support. 
 

CLONE-BODY-MODEL 
 
The clone-body-model proposed in this paper 
consists of a set of clone-body-parts, connected by 
joints, similar to the representations proposed by 
Badler et al. (1993). Clone-body-parts include the 
head, clavicle, trunk, upper arms, forearms, hands, 
thighs, calves and feet. Degrees of freedom are 
modeled for gross full body motion. Degrees of 
freedom supporting finer resolution movements are 
not yet modeled, including the radioulnar (forearm 
rotation), interphalangeal (toe), metacarpophalangeal 
(finger) and carpometacarpal (thumb) joint motions. 

Each clone-body-part consists of a rigid spine 
with pixels radiating out (Figure 1). Each pixel 
represents a point on the surface of a clone-body-
part. Associated with each pixel is: radius or 
thickness of the clone-body-part at that point; colour 
as in hue, saturation and intensity; accuracy of the 
colour and radius; and the elasticity inherent in the 
body part at that point. Although each point on a 
clone-body-part is defined by cylindrical 
coordinates, the radius varies in a cross section to 
exactly follow the contour of the body as shown in 
Figure 2. 

Automated initialisation assumes only one 

 
Figure 2. Clone-body-model example rotating through 360 degrees. 
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Figure 3. Three homogeneous transformation functions B(), C(), I() project a point from 
a clone-body-part onto a pixel in the 2D image. 

 
person is walking upright in front of a static 
background initially with gait being a known 
movement model. Anthropometric data (Pheasant, 
1996) is used as a Gaussian prior for initializing the 
clone-body-part proportions with left-right 
symmetry of the body used as a stabilizing guide 
from 50th percentile proportions. Such constraints on 
the relative size of clone-body-parts and on limits 
and neutral positions of joints help to stabilize 
initializations.  Initially a low accuracy is set for 
each clone-body-part with the accuracy increasing as 
structure from motion resolves the relative 
proportions. For example, a low colour and high 
radius accuracy is initially set for pixels near the 
edge of a clone-body-part, high colour and low 
radius accuracy for other near side pixels and a low 
colour and low radius accuracy is set for far side 
pixels. The ongoing temporal resolution following 
self occlusions enables increasing radius and colour 
accuracy. Breathing, muscle flexion and other 
normal variations of body part radius are accounted 
for by the radius elasticity parameter. 
 
KINEMATIC MODEL 
 
The kinematical model tracking the position and 
orientation of a person relative to the camera entails 
projecting 3D clone-body-model parts onto a 2D 
image using three chained homogeneous 
transformation matrices as illustrated in Figure 3 
(see Equation 1 in Appendix). 

Joint angles are used to track the location and 
orientation of each body part, with the range of joint 
angles being constrained by limiting the DOF 
associated with each joint. A simple motion model 
of constant angular velocity for joint angles is used 
in the kinematical model. Each DOF is constrained 
by anatomical joint-angle limits, body-part inter-
penetration avoidance and joint-angle equilibrium 
positions modelled with Gaussian stabilizers around 
their equilibria. To stabilize tracking, the joint angles 
are predicted for the next frame. The calculation of 

joint angles, for the next frame, is cast as an 
estimation problem which is solved using a Particle 
filter (Condensation algorithm). 

  
PARTICLE FILTER 
 
The Particle Filter was developed to address the 
problem of tracking contour outlines through heavy 
image clutter (Isard and Blake, 1996; 1998). The 
filter’s output at a given time-step, rather than being 
a single estimate of position and covariance as in a 
Kalman filter, is an approximation of an entire 
probability distribution of likely joint angles. This 
allows the filter to maintain multiple hypotheses and 
thus be robust to distracting clutter. 

With about 32 DOFs for joint angles to be 
determined for each frame, there is the potential for 
exponential complexity when evaluating such a high 
dimensional search space. MacCormick (2000) 
proposed Partitioned Sampling and Sullivan (1999) 
proposed Layered Sampling to reduce the search 
space by partitioning it for more efficient particle 
filtering. Although Annealed Particle Filtering 
(Deutscher et al., 2000) is an even more general and 
robust solution, it struggles with efficiency which 
Deutscher (2001) improves with Partitioned 
Annealed Particle Filtering. 

The Particle Filter is a considerably simpler 
algorithm than the Kalman Filter. Moreover despite 
its use of random sampling, which is often thought 
to be computationally inefficient, the Particle Filter 
can run in real-time. This is because tracking over 
time maintains relatively tight distributions for shape 
at successive time steps and particularly so given the 
availability of accurate learned models of shape and 
motion from the human-movement-recognition 
(CHMR) system. Here, the particle filter has:  
 
3 probability distributions in problem specification:  

1. Prior density p(x) for the state x 
 joint angles x in previous frame  

2. Process density p(xt|xt-1)  
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 kinematical and clone-body-models (xt-1: 
previous frame, xt: next frame) 

3. Observation density p(z|x) 
 image z in previous frame 

 
one probability distribution in solution specification:  

1. State Density p(xt|Zt)  
 where xt is the joint angles in next frame Zt 

 
1. Prior density: Sample s′t from the prior 

density p(xt-1|zt-1) where xt-1=joint angles in previous 
frame, zt-1. The sample set are possible alternate 
values for joint angles. When tracking through 
background clutter or occlusion, a joint angle may 
have N alternate possible values (samples) s with 
respective weights w, where prior density,   
 
    p(x)  ≈  St-1 = {(s(n),w(n)), n=1..N}  =  a sample set 
(St-1 is the sample set for the previous frame, w(n) is the nth 
weight of the nth sample s(n) ) 
 

For the next frame, a new sample is selected, 
s′t = st-1 by finding the smallest i for which c(i) ≥ r, 
where c(i) = ∑tw(i) and r is a random number {0,1}. 

 
2. Process density: Predict st from the process 

density p(xt|xt-1= s′t). Joint angles are predicted for 
the next frame using the kinematic model, body 
model & error minimisation. A joint angle, s ( )n

t in the 
next    frame  is  predicted   by   sampling  from   the  

process density, p(xt|xt-1 = s′t(n)) which encompasses 
the kinematic model, clone-body-model and cost 
function minimisation. In this prediction step both 
edge and region information is used. The edge 
information is used to directly match the image 
gradients with the expected model edge gradients. 
The region information is also used to directly match 
the values of pixels in the image with those of the 
clone-body-model’s 3D colour texture map. The 
prediction step involves minimizing the cost 
functions (measurement likelihood density):  
 
edge error Ee using edge information (see Equation 
2 in Appendix): 
 
region error Er using region information(see 
Equation 3 in Appendix): 

 
3. Observation density: Measure and weigh 

the new position in terms of the observation density, 
p(zt|xt). Weights wt = p(zt|xt = st) are estimated and 
then weights ∑nw(n) = 1 are normalized. The new 
position in terms of the observation density, p(zt|xt) 
is then measured and weighed with forward 
smoothing: 

Smooth weights wt over 1..t, for n trajectories 
Replace each sample set with its n trajectories 

{(st,wt)} for 1..t 
Re-weight all w(n) over 1..t 
Trajectories tend to merge within 10 frames 
O(Nt) storage prunes down to O(N) 

 

 
Figure 4. Tracking jumping into a flic-flac with four overlaid information tiles. Tile 1: 
principle axis through the body; Tile 2: body frame of reference (normalised to the 
vertical); Tile 3: motion vector trace (subset displayed); Tile 4: recognised skills. 
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Figure 5. Tracking height, angle of splits, centre of mass and principal axis through a split jump. 

 
In this research, feedback from the CHMR 

system utilizes the large training set of skills to 
achieve an even larger reduction of the search space. 
In practice, human movement is found to be highly 
efficient, with minimal DOFs rotating at any one 
time. The equilibrium positions and physical limits 
of each DOF further stabilize and minimize the 
dimensional space. With so few DOFs to track at 
any one time, a minimal number of particles are 
required, significantly raising the efficiency of the 
tracking process. Such highly constrained movement 
results in a sparse domain of motion projected by 
each motion vector. 

Because the temporal variation of related 
joints and other parameters also contains 
information that helps the recognition process infer 
skill boundaries, the system computes and appends 
the temporal derivatives and second derivatives of 
these features to form the final motion vector. Hence 
the motion vector includes joint angles (32 DOF), 
body location and orientation (6 DOF), centre of 
mass (3 DOF), principle axis (2 DOF) all with first 
and second derivatives. 

 
PERFORMANCE 
 
Hundreds of jumps and leaps were tracked and 
classified using a 2GHz, 640MB RAM Pentium IV 
platform processing 24 bit colour within the 
Microsoft DirectX 9, Intel OpenCV environment 
under Windows XP. The video sequences were 
captured with a Logitech USB 2.0 camera at 30 fps, 
320 by 240 pixel resolution. Each person jumped in 
front of a stationary camera with a static background 
and static lighting conditions with minimal shadows. 
Only one person was in frame at any one time. 
Tracking began when the whole body was visible 
which enabled initialisation of the clone-body-
model.  

The skill error rate quantifies CHMR system 
performance by expressing, as a percentage, the ratio 

of the number and magnitude of joint angle tracking 
errors to the number of joint angles in the reference 
set. Depending on the skill, CHMR system skill 
error rates can vary by an order of magnitude. The 
CHMR system results are based on a set of a total of 
240 jump patterns, from straight jumps and split 
leaps (Figure 5) to jumping backward into flic-flacs 
(Figure 4). These were successfully tracked and 
evaluated with their respective biomechanical 
components quantified where a skill error rate of 
only 3.8% was achieved. 

Motion blurring lasted about 10 frames on 
average with the effect of perturbing joint angles 
within the blur envelope. Given a reasonably 
accurate angular velocity, it was possible to 
sufficiently de-blur the image. There was minimal 
motion blur arising from rotation about the 
longitudinal axis during a twisting salto due to a low 
surface velocity tangential to this axis from minimal 
radius with limbs held close to a straight body shape. 
This can be seen in Figure 6 where the arms exhibit 
no blurring from twisting rotation, contrasted with 
motion blurred legs due to a higher tangential 
velocity of the salto rotation. 

 

 
Figure 6. Minimal motion blur arising from 
rotation about the longitudinal axis during a 
double twisting salto.  
 

The CHMR system also failed for loose 
clothing. Even with smoothing, joint angles 
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surrounded by baggy clothes permutated through 
unexpected angles within an envelope sufficiently 
large as to invalidate the tracking and evaluation. 
 
CONCLUSIONS 
 
The 3.8% error rate attained in this research is not 
yet evaluating a natural world environment nor is 
this a real-time system with up to seconds to process 
each frame. The CHMR system did achieve 96.2% 
accuracy for the reference test set of skills. Although 
this 96.2% recognition rate was not as high as the 
99.2% accuracy achieved, a larger test sample of 
skills were evaluated in this paper. 

To progress towards the goal of lower error 
rates, the following improvements seem most 
important: 

• Expand the clone-body-model to include a 
complete hand-model for enabling even more 
subtle movement domains such as finger signing 
and to better stabilize the hand position during 
tracking. 
• Use a multi-camera or multi-modal vision 

system such as infra-red and visual spectrum 
combinations to better disambiguate the body 
parts in 3D and track the body in 3D. 
• More accurately calibrate all movement 

skills with multiple subjects performing all skills 
on an accurate commercial tracking system 
recording multiple camera angles to improve on 
depth of field ambiguities. Such calibration 
would also remedy the qualitative nature of 
tracking results from computer vision research 
in general.  
• Enhance tracking granularity using cameras 

with higher resolution, frame rate and lux 
sensitivity. 

 
The results suggest that this approach has the 

potential to assist coaches and athletes optimise 
jump based skills during regular sessions by 
automatically displaying and logging biomechanical 
parameters of specific skills involving jumping and 
leaping.  
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KEY POINTS 
 
• Computer-vision based marker-free tracking. 
• Real-time biomechanical analysis. 
• Improve tracking using a forward smoothing 

Particle filter. 
• Automatically segment using hierarchical 

Hidden Markov Models. 
• Recognize skills using segmented motion. 
• Optimize take-off angles using speed, base of 

support, joint angles and mass of body 
segments. 

• Optimize height, distance or rotation of skills. 
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APPENDIX  
(Equations) 

 
Equation 1: 

p (x, b ) = Ii (x, Ci (x, Bi (x, b )))            (1) 
 

where x is a parameter vector calculated for optimum alignment of the projected model with the image, B is the 
Body frame of reference transformation, C is the Camera frame of reference transformation, I is the Image frame of 
reference transformation, b is a body-part surface point, p is a pixel in 2D frame of video (Rehg and Kanade, 1995). 

 
Equation 2: 
edge error Ee using edge information: 

   Ee(St) =
1

2neve

(|∇it(x, y) |−mt (x, y,St))
2 + 0.5(S − St )

T

x,y
∑ Ct

−1(S − St) →minSt       (2) 

 
Equation 3: 
region error Er using region information (Equation 3): 
 

    Er (St ) =
1

2nrvr

(it[pj (St )]− it−1[ pj(St−1)])
2 + Ee(St)

j=1

nr

∑ →minSt                               (3) 

 
where it represents the image at time t,  mt the model gradients at time t,  ne is the number of edge values summed, ve is 
the edge variance, nr is the number of region values summed, vr is the region variance, pj is the image pixel coordinate 
of the jth surface point on a clone-body-part. 
 


