Normative Reference Values and International Comparisons for the 20-Metre Shuttle Run Test: Analysis of 69,960 Test Results among Chinese Children and Youth

Feng Zhang 1,2, Xiaojian Yin 1,2,3, Cunjian Bi 1,2, Yuqiang Li 1,2, Yi Sun 1,2, Ting Zhang 1,2, Xiaofang Yang 1,2, Ming Li 1,2, Yuan Liu 1,2, Junfang Cao 1,2, Ting Yang 1,2, Yaru Guo 1,2 and Ge Song 1,2

1 Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; 2 College of Physical Education and Health, East China Normal University, Shanghai, China; 3 College of Economics and Management, Shanghai Institute of Technology, Shanghai, China

Abstract
There is increasing evidence that cardiorespiratory endurance (CRE) is declining among Chinese children and youth. The 20-meter shuttle run test (20-m SRT) is considered the most effective and widely used field-based measurement of CRE for children and youth worldwide. However, there have been few attempts to set 20-m SRT norms for Chinese children and youth. We aimed to develop sex- and age-specific 20-m SRT norms for Chinese children and youth, and compare them with international standards. Participants were 69,960 healthy children and youth aged 9-17 years from six geographical areas of China, selected using a stratified cluster random sampling method. Sex- and age-specific 20-m SRT percentiles and curves were extracted for four common 20-m SRT metrics (laps, completed stages/minutes, speed at the last complete stage, estimated peak oxygen uptake). We also estimated the prevalence of healthy CRE according to the interim international cut-points (42 mL.kg⁻¹.min⁻¹ for boys, 35 mL.kg⁻¹.min⁻¹ for girls). Chinese boys consistently outperformed Chinese girls, while more girls (86.4%) exhibited healthy CRE than boys (67.1%). Younger children and youth were more likely to meet the standards compared with the older, regardless of sex. Chinese children and youth underperformed international norms by 0.85% for boys and 3.1% for girls. The performance indicator (z-score) of Chinese children and youth was -0.01, indicating that 20-m SRT performance was worse than the international mean. The sex differences were also higher for international than Chinese students. This study provided national sex- and age-specific 20-m SRT Chinese norms, offering a valuable tool for screening, monitoring and identifying target groups for future interventions and early prevention of cardiovascular risk factors.

Keywords: Cardiorespiratory endurance, laps, completed stages/minutes, speed at the last complete stage, estimated peak oxygen uptake, prevalence.

Introduction
As an important indicator of health in children and youth, cardiorespiratory endurance (CRE) reflects the ability to deliver and use oxygen to generate energy for muscle activity during exercise (Armstrong et al., 2011; Institute of Medicine, 2012). CRE has been inversely associated with body fat (Andersen et al., 2008), metabolic syndrome (Brage et al., 2004), arterial compliance (Reed et al., 2005), cardiovascular disease risk (Ortega et al., 2008), cancer, and mental health disorders (Ruiz et al., 2009a). CRE can be used to provide insight into the synergistic capabilities of various bodily systems and organs involved in performing physical activity and exercise (Ortega et al., 2008). Additionally, CRE can track these capabilities relatively well from childhood to adulthood (Malina, 2001; Ortega et al., 2013).

The 20-meter shuttle run test (20-m SRT) (Tomkinson and Olds, 2007; Catley and Tomkinson, 2013) is considered the most effective field-based measurement of CRE for children and youth and is the most widely used method for this purpose worldwide. Although the 20-m SRT cannot provide specific information about the function or contribution of specific systems, and its scoring method involves subjectivity (Cooper Institute for Aerobics Research, 1992), it is a useful measure of peak oxygen uptake (VO₂peak), because VO₂peak is achieved at the completion of maximal performance (Tomkinson et al., 2019). Moreover, the 20-m SRT can authentically imitate typical activities performed by youth and has moderate-to-high criterion-related validity (rp = 0.78, 95% confidence interval [CI] [0.72-0.85]) for estimating VO₂peak (Mayorga-Vega et al., 2015). Besides, a previous study of the 20-m SRT reported a test-retest reliability coefficient of 0.89 for children (Leger et al., 1988). Together with its low cost, simplicity, and ability to test large groups of children simultaneously (Melo et al., 2011; Ruiz et al., 2009b; Tomkinson and Olds, 2008), the 20-m SRT can provide an excellent tool for population-based health surveillance and monitoring.

Several reference standards have been set to classify the CRE levels and to identify the individual’s clinical metabolic risk status. Tomkinson et al. (2017) established international sex- and age-specific 20-m SRT norms for health and fitness screening, profiling, monitoring and surveillance based on 1,142,026 children and youth from 50 countries. Besides, 20-m SRT norms have been published for Europe (Tomkinson et al., 2017), North America (Carrel et al., 2012), Oceania (Catley and Tomkinson, 2013) and England (Sandercoc et al., 2008), whereas limited 20-m SRT data are available for Asian youth. There have been a small number of studies in East Asian populations from Mainland China (Wang et al., 2011; Zou et al., 2019), Hong Kong (Barnett et al., 1993), Japan (Yang et al., 2019), the Philippines (Gonzalez-Suarez et al., 2013), and South Korea (Stickland et al., 2003). However, besides

Received: 21 November 2019 / Accepted: 08 May 2020 / Published (online): 01 September 2020

http://www.jssm.org
Participants

There are six main geographical areas in China (East China, North China, Central-South China, Northeast China, Northwest China, Southwest China). Considering population weighting, geographical location and gross domestic product per capita, corresponding cities were selected from 27 of the 31 provinces of Mainland China across the six areas in 2015-2016. In each city, primary and middle schools with students aged 7-18 years were selected from urban and rural areas. A stratified random cluster sampling method was then used to select classes in selected schools. Finally, 93,755 healthy children and youth (without serious physical or mental illness, physical disability, or intellectual disability) aged 7-18 years were recruited. A total of 92,477 participants aged 7-18 years were eventually included, after excluding 1,278 participants (1.36%) because of a lack of demographic information (n = 674, 0.72%), a lack of information on 20-m SRT laps (n = 226, 0.28%) or extreme values (n = 338, 0.36%), defined as sex- and age-20-m SRT Z score > 3 or < -3 standard deviations (SD). Data for 69,960 children and youth aged 9-17 years were extracted for use in the present study. These participants included boys (51.2%, 47.6% - 53.3% for each age group) and girls (48.8%), Han (92%) and minority nationalities (8%), consistent with the sixth census of China in 2010 (China Statistics Press., 2010), urban students (49.7%) and rural students (50.3%).

Questionnaire and 20-m SRT test

A self-administered questionnaire covering demographic indicators, family status, living habits, and mental health was administered to participating children and youth, from which only demographic information was obtained for the present study. Questionnaires were completed over a 40-min period in the classroom in the presence of graduate students majoring in human sports science.

The FitnessGram protocol was used to conduct the 20-m SRT test (Cooper Institute for Aerobics Research, 1992). The test was conducted on rubberized school playgrounds or covered stadiums, in which two lines 20-m apart were drawn. The required equipment consisted of an audio player and the beep test audio recordings. Approximately 40 students from the same class were divided into two groups by sex, with approximately 15-20 individuals in each group, according to the actual number of boys and girls in the class. Each test was conducted by a team of four postgraduate students majoring in sports and human science who were trained according to FITNESSGRAM recommendations (Cooper Institute for Aerobics Research, 1992) before beginning the assessments. After participants had adequately warmed up and viewed an instructional 20-m SRT video recorded in advance, participants were asked to continually run between the two lines 20-m apart, turning when signaled by the recorded beeps. For this reason, the test is also often called the “beep” or “bleep” test. Participants started at a speed of 8.0 km.h⁻¹. After approximately one minute, at the end of the first stage on the cassette called “stage 1”, a sound indicated an increase in speed to 9.0 km.h⁻¹. Thereafter, the speed was increased by 0.5 km.h⁻¹ each minute. Children ran in time with a series

Methods

Data sources and ethical considerations

In 2015-2016, a cross-sectional survey called “Development of new methods and evaluation standards for the physical health of children and youth in China” was conducted. This project aimed to develop new assessment methods and evaluation standards for the physical health of Chinese children and youth. It was approved by the Human Experiment Ethics Committee of East China Normal University (approval No. HR2016/12055). Informed consent was obtained from schools, teachers, students, and parents. Participants were informed about the investigation objectives and requirements before data were collected. All participants’ names were digitally coded to avoid the release of personal information.
of audible signals for as long as possible until they could no longer run the 20-m distance in time with the audio signal (on two consecutive occasions) or when they stopped because of volitional fatigue. The last lap completed (not necessarily the level stopped at) was recorded as the result.

It should be noted that this research was conducted during 2015–2016 and took place over one year. Thus, a deviation may be caused by climate differences between summer and winter, which is a common limitation among large data studies. However, we conducted the test in covered stadiums in winter wherever possible, and allowed participants to adequately warm-up to reduce the impact of environmental conditions such as temperature and weather.

Data analysis
The last birthday of each participant was used as the criterion for calculating age. Completed stages/minutes and speed at the last complete stage (km.h⁻¹) were calculated according to laps. Estimated peak oxygen uptake (VO₂peak, mL.kg⁻¹.min⁻¹) was calculated using an equation developed by Leger et al. (1988) based on the number of laps. This is a widely used and internationally recognized method for estimating VO₂peak:

\[
\text{VO}_2\text{peak} = 31.025 + 3.238 \times S - 3.248 \times \text{Age} + 0.1536 \times \text{S} \times \text{Age}
\]

S: the running speed at the last completed stage (km.h⁻¹); Age: age at the last birthday.

The lambda, mu and sigma method (LMS) summarizes the changing distribution in reference centile curves by three curves representing the median, coefficient of variation and skewness (Cole and Green, 1992). LMS has become the main method for developing growth evaluation and nutrition screening criteria worldwide because it can provide a convenient “black box” for fitting smooth reference centile curves (Cole and Green, 1992; Fenton and Sauve, 2007; Guedes et al., 2010; Hagiwara et al., 2014). We used the LMS method to establish sex- and age-specific 20-m SRT percentiles and curves for Chinese children and youth for four 20-m SRT metrics (laps, completed stages/minutes, the speed at the last complete stage and VO₂peak). Smooth centile curves were fitted to obtain sex- and age-specific 20-m SRT norms of Chinese children and youth by combining the changing distribution of three sex- and age-specific curves representing skewness (L, expressed as a Box-Cox power transformation), median (M) and coefficient of variation (S). We obtained cubic splines using non-linear regression. Smoothing parameters or equivalent degrees of freedom were used to express the extent of smoothing required. These analyses were performed using the LMS Chart maker Pro version 2.43 (Institute of Child Health, London) (Pan and Cole, 2010). The effective degrees of freedom for 20-m SRT speed in the present study were 1 (L curve), 4 (M curve) and 3 (S curve) for boys, and 1 (L curve), 3 (M curve) and 3 (S curve) for girls.

The percentages of children and youth with healthy CRE were estimated using the interim international cut-points (42 mL.kg⁻¹.min⁻¹ for boys, 35 mL.kg⁻¹.min⁻¹ for girls) (Ruiz et al., 2016). Healthy CRE (%) was calculated by the number of participants that met the criterion-referenced standards over the total number of participants. Z scores of VO₂peak were calculated as a students’ VO₂peak value minus the mean, divided by the SD for that child’s age and sex in the international 20-m SRT performance norms. We used this Z score as a performance indicator to rank Chinese participants against their international peers from 50 other countries (Lang et al., 2018). The sex-specific difference in estimated VO₂peak (mL.kg⁻¹.min⁻¹) at each age (9-17 years) was calculated. Positive differences indicated better performance for both boys than girls. The speed at the last completed stage was compared between Chinese children and youth, and international standards. The level of statistical significance was set at 0.05 and all analyses were conducted using SPSS version 25.0 (IBM, Armonk, NY, USA).

Results
Tabulated centiles from 5% to 95% were used to present norms for four common 20-m SRT metrics (Table 1 for laps, Table 2 for completed stages/minutes, Table 3 for speed at the last complete stage and Table 4 for estimated VO₂peak).

Table 1. 20-m SRT (number of laps) centiles by age and sex for 69,960 Chinese children and youth aged 9–17 years.

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>P5</th>
<th>P10</th>
<th>P20</th>
<th>P50</th>
<th>P90</th>
<th>P95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>14</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>27</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>20</td>
<td>26</td>
<td>30</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>22</td>
<td>28</td>
<td>33</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>23</td>
<td>29</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>24</td>
<td>31</td>
<td>36</td>
<td>41</td>
<td>46</td>
</tr>
<tr>
<td>Girls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>16</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>31</td>
</tr>
</tbody>
</table>

Ages shown represent age at last birthday (e.g. 9 = 9.0–9.99).
Table 2. 20-m SRT (number of completed stages/minutes) centiles by age and sex for 69,960 Chinese children and youth aged 9–17 years.

<table>
<thead>
<tr>
<th>Age(yr)</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1.54</td>
<td>1.85</td>
</tr>
<tr>
<td>10</td>
<td>1.72</td>
<td>2.07</td>
</tr>
<tr>
<td>11</td>
<td>1.93</td>
<td>2.32</td>
</tr>
<tr>
<td>12</td>
<td>2.16</td>
<td>2.59</td>
</tr>
<tr>
<td>13</td>
<td>2.40</td>
<td>2.87</td>
</tr>
<tr>
<td>14</td>
<td>2.61</td>
<td>3.12</td>
</tr>
<tr>
<td>15</td>
<td>2.79</td>
<td>3.33</td>
</tr>
<tr>
<td>16</td>
<td>2.93</td>
<td>3.48</td>
</tr>
<tr>
<td>17</td>
<td>3.03</td>
<td>3.60</td>
</tr>
</tbody>
</table>

Table 3. 20-m SRT (speed at the last complete stage/km.h\(^{-1}\)) centiles by age and sex for 69,960 Chinese children and youth aged 9–17 years.

<table>
<thead>
<tr>
<th>Age(yr)</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>8.73</td>
<td>8.91</td>
</tr>
<tr>
<td>10</td>
<td>8.83</td>
<td>9.02</td>
</tr>
<tr>
<td>11</td>
<td>8.95</td>
<td>9.16</td>
</tr>
<tr>
<td>12</td>
<td>9.08</td>
<td>9.31</td>
</tr>
<tr>
<td>13</td>
<td>9.22</td>
<td>9.46</td>
</tr>
<tr>
<td>14</td>
<td>9.34</td>
<td>9.60</td>
</tr>
<tr>
<td>15</td>
<td>9.43</td>
<td>9.70</td>
</tr>
<tr>
<td>16</td>
<td>9.49</td>
<td>9.77</td>
</tr>
<tr>
<td>17</td>
<td>9.52</td>
<td>9.81</td>
</tr>
</tbody>
</table>

Table 4. 20-m SRT (VO\(_{2\text{max}}\), mL.kg\(^{-1}\)min\(^{-1}\)) centiles by age and sex for 69,960 Chinese children and youth aged 9–17 years.

<table>
<thead>
<tr>
<th>Age(yr)</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>42.0</td>
<td>42.9</td>
</tr>
<tr>
<td>10</td>
<td>40.5</td>
<td>41.5</td>
</tr>
<tr>
<td>11</td>
<td>39.2</td>
<td>40.3</td>
</tr>
<tr>
<td>12</td>
<td>38.0</td>
<td>39.3</td>
</tr>
<tr>
<td>13</td>
<td>36.9</td>
<td>38.3</td>
</tr>
<tr>
<td>14</td>
<td>35.8</td>
<td>37.2</td>
</tr>
<tr>
<td>15</td>
<td>34.5</td>
<td>36.0</td>
</tr>
<tr>
<td>16</td>
<td>33.1</td>
<td>34.7</td>
</tr>
<tr>
<td>17</td>
<td>31.6</td>
<td>33.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age(yr)</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>42.3</td>
<td>43.0</td>
</tr>
<tr>
<td>10</td>
<td>40.8</td>
<td>41.6</td>
</tr>
<tr>
<td>11</td>
<td>39.3</td>
<td>40.2</td>
</tr>
<tr>
<td>12</td>
<td>37.8</td>
<td>38.8</td>
</tr>
<tr>
<td>13</td>
<td>36.3</td>
<td>37.3</td>
</tr>
<tr>
<td>14</td>
<td>34.8</td>
<td>35.7</td>
</tr>
<tr>
<td>15</td>
<td>33.1</td>
<td>34.1</td>
</tr>
<tr>
<td>16</td>
<td>31.5</td>
<td>32.5</td>
</tr>
<tr>
<td>17</td>
<td>29.8</td>
<td>30.8</td>
</tr>
</tbody>
</table>
The smoothed centile curves for 20-m SRT laps, the speed at the last stage and estimated VO_2peak are presented in Figure 1. The number of laps increased with age. For example, the P_{50} of the number of laps increased from 20 to 46 for boys and increased from 19 to 31 for girls aged between 9 and 17 years old. Similar trends were found in completed stages/minutes and speed at the last complete stage, whereas estimated VO_2peak (mL·kg$^{-1}$·min$^{-1}$) decreased by 13.4% for boys and 23.3% for girls as age increased from 9–17 years old, taking P_{50} as an example.

Figure 2 shows the percentage of Chinese children and youth aged 9–17 years meeting the interim international cut-points (42 mL·kg$^{-1}$·min$^{-1}$ for boys, 35 mL·kg$^{-1}$·min$^{-1}$ for girls) (Ruiz et al., 2016). Overall, 67.1% of boys and 86.4% of girls had healthy CRE. The percentages of girls with healthy CRE were higher than that of boys in each age group, except at 17 years old, in which boys’ CRE
was slightly higher. All girls aged 9–12 years met the standards, then decreased to 41.9% by 17 years of age. Although there were slight fluctuations, the results revealed an age gradient for boys, in which the highest and lowest prevalence rates were exhibited at 9 years old (97.2%) and 16 years old (41.3%) respectively. Younger children were more likely to meet the standards compared with older children, regardless of sex.

Figure 3. Standardized differences in speed at the last completed stage (km.h⁻¹) between age-matched boys and girls for Chinese children and youth compared with international values.

Table 5 showed the comparisons on 20-m SRT test performance (Gahche et al., 2017; Sandercock et al., 2015).

<table>
<thead>
<tr>
<th>Age(yr)</th>
<th>N</th>
<th>Mean ± SD</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3876 ± 0.64</td>
<td>-25.45</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4160 ± 0.67</td>
<td>-23.08</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4149 ± 0.69</td>
<td>-17.89</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3868 ± 0.81</td>
<td>-12.45</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3815 ± 0.92</td>
<td>-6.71</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3826 ± 0.96</td>
<td>-6.51</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4200 ± 1.00</td>
<td>-5.74</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4273 ± 1.03</td>
<td>-11.48</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3632 ± 1.03</td>
<td>-12.88</td>
<td><0.01</td>
</tr>
<tr>
<td>Total</td>
<td>35799</td>
<td>589126</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion

The present study developed sex- and age-specific 20-m SRT norms for Chinese children and youth, and conducted comparisons with international standards. Regional, national and international 20-m SRT norms have previously been developed to effectively evaluate children’s aerobic test performance (Gahche et al., 2017; Sandercock et al.,...
Chinese children and youth may be an important contributor to the increasing prevalence of overweight and obesity among children. The prevalence of obesity increased from 0.5% to 7.3% among children increased from 2.1% in 1985 to 12.2% in 2014, according to the 2017 Report on Childhood Obesity in China, the prevalence of overweight status among Chinese school-aged children and youth was found to be lower than international norms. It is noteworthy that income inequality acts as a social stressor, and is associated with worse health, such as an elevated risk of cardiovascular disease (Pickett and Wilkinson, 2015). The study also indicated that income inequality is a moderate to strong negative correlate of CRE in children and youth, regardless of country development status (Lang et al., 2018). China’s Gini coefficient (38.9) is higher than the international average (36.9) (The World Bank, 2015), providing one potential explanation for the low CRE observed among Chinese children and youth. As a broad measure of human capital and potential, the HDI in developing countries is a strong negative correlate of 20-m SRT performance in children and youth (r = -0.56), including China (Lang et al., 2018). The 2011 Human Development Report showed that China’s HDI was 0.687, slightly higher than the worldwide average (0.682) (United Nations Development Programme, 2011). In the current study, the CRE of Chinese children and youth were found to be lower than international norms. It has been reported that urbanization, characterized by lower energy requirements, is a moderate negative correlate of 20-m SRT performance in developing countries (r = -0.45). China has experienced rapid economic development with the implementation of policies of reforms and the opening up of China since 1978 and China’s urbanization rate reached 59.58% by the end of 2018, higher than the worldwide average (55.27%) (The World Bank, 2018), possibly contributing to the low CRE among Chinese children and youth.

Several previous studies have reported that the relationship between body mass index (BMI) and CRE exhibits an inverted U-shaped curve (Bi et al., 2019; Huang and Malina, 2007; Li et al., 2017; Zhao et al., 2017). One previous study reported that the prevalence of overweight status and obesity among children and youth in developed countries tended to be stable, whereas that in developing countries is growing rapidly, including China (US Preventive Services Task Force, 2017). According to the 2017 Report on Childhood Obesity in China, the prevalence of overweight status among Chinese school-aged children increased from 2.1% in 1985 to 12.2% in 2014, and the prevalence of obesity increased from 0.5% to 7.3% in the same period (Zhang and Ma, 2017). Therefore, the increasing prevalence of overweight and obesity among Chinese children and youth may be an important contributor to their low CRE.

A previous study revealed that compared with students who used passive transport, those English school students who walked (OR = 1.31 for girls and 1.20 for boys) and cycled (OR = 9.99 for girls and 1.31 for boys) to school were more likely to be classed as fit, corresponding to high CRE (Voss and Sandercok, 2010). Similar findings have been reported from Colombia (Amaya, 2017; Ramirez-Velez et al., 2017) and China (Yang et al., 2017), indicating a positive relationship between CRE and active modes of traveling to school (e.g., walking or cycling). However, a survey conducted by Sun et al. (2015) revealed that only 59.9% of Chinese high school students cycled or walked to and from school, which was lower than the proportion in some other countries (Voss and Sandercok, 2010), potentially contributing to the lower CRE among children in China.

A study by Sandercok et al. (2010) reported that a higher CRE level was associated with a higher frequency of eating breakfast among British boys. Thivel et al. (2013) reached the same conclusion based on research among French children and youth. According to the China Health and Nutrition Survey conducted by the Chinese Center for Disease Control, Chinese children and youth exhibit various unhealthy eating habits, such as skipping breakfast and consuming high-sugar drinks, as well as consuming high-salt and high-fat diets (Yu et al., 2018; Cai et al., 2013; Hu et al., 2010; Liu et al., 2011). Therefore, eating habits may be another factor contributing to low CRE levels among Chinese children and youth.

Sedentary behavior may also be a factor influencing the CRE levels of Chinese children and youth. An investigation by Gahche et al. (2017) reported that children and youth aged 6-11 years in the United States engaging in more than 2 hours of screen time per day tended to have low CRE levels. According to the 2018 Physical Activity Guidelines for Americans (Piercy et al., 2018), excessive screen time was associated with increased risk of death, and is also negatively correlated with CRE. The proportion of Chinese children and youth engaging in more than 2 hours of screen time per day is reported to have reached 58.5% (Fu, 2013), which may also partially explain the low CRE levels observed in the current study.

The present study involved several strengths and limitations that should be considered. Importantly, the current study obtained 20-m SRT data for 69,960 children and youth from six geographical areas of China, constituting the largest national CRE database to date. To our knowledge, this study is the first survey of 20-m SRT norms in China to conduct systematic comparisons with international standards. An important limitation of this study was that we did not consider biological maturity. However, although biological maturity might impact CRE, particularly in girls, the norms were age- and sex-specific, which may have reduced the influence of growth and development in adolescence to some extent. Besides, this was a cross-sectional study, and a longitudinal cohort study will be needed to better understand the age- and sex-based differences in CRE among children and youth in China.

Conclusion

Because of the advantages of the method in terms of suitability for simultaneous large group testing, simplicity, convenience, low-cost and reasonable level of validity, the 20-m SRT is the most widely used measure of CRE world-
wide, providing an excellent marker of current and future health of populations (Mahar et al., 2011; Wilkinson et al., 1999). Firstly, based on 20-m SRT performance data for 69,960 Chinese children and youth, the current study provided national sex- and age-specific norms for children and youth. These data can help to identify target groups requiring future intervention. For example, children and youth with very high CRE may be candidates for recruitment into elite sporting or athletic development programs. In contrast, for children and youth with very low CRE, appropriate fitness goals should be set to promote positive health-related fitness behavior and monitor longitudinal changes. Secondly, the current study estimated the prevalence of children and youth with healthy CRE according to the interim international cut-points (42 mL·kg⁻¹·min⁻¹ for boys, 35 mL·kg⁻¹·min⁻¹ for girls) (Ruiz et al., 2016), offering a valuable tool for screening, monitoring and early prevention of cardiovascular risk factors. Thirdly, the CRE of Chinese children and youth is lower than international standards and corresponding intervention strategies aimed at improving CRE levels should be considered in both school and family environments.

Unfortunately, despite its many advantages, and the Education Department of the Chinese Government has not yet adopted the 20-m SRT as a nationwide test. Therefore, we propose that it would be valuable for Chinese government departments to formulate policies to promote 20-m SRT projects for the whole country and conduct regular tests to evaluate CRE among children and youth. This would also support horizontal international comparisons.

Acknowledgments
Our great appreciation goes to Prof. Yi Song in the School of Public Health, Peking University. We also sincerely thank all the PE teachers and participants for their cooperation. The experiments comply with the current laws of the country in which they were performed. The authors have no conflict of interest to declare.

References

Cooper Institute for Aerobics Research. (1992) The Prudential FITNESSGRAM Test Administration Manual. Cooper Institute for Aerobics Research: Dallas, TX, USA.

Key points

- Provided national sex- and age-specific 20-m SRT Chinese norms, offering a valuable tool for screening, monitoring and identify target groups for future interventions and early prevention of cardiovascular risk factors.
- Estimated the prevalence of healthy CRE and performed comparisons with international standards.

AUTHOR BIOGRAPHY

Feng ZHANG
Employment
Ph.D. student at the School of Physical Education and Health, East China, Normal University, Shanghai, China
Degree
MSc
Research interests
Physical fitness, Nutrition status, Children and adolescents.
E-mail: fzhang1988@126.com

Xiaojian YIN
Employment
Professor in College of Economics and Management, Shanghai Institute of Technology, Shanghai, China
Degree
PhD
Research interests
Obesity, Physical fitness, Children and adolescents, Executive function, High altitude, Physical activity.
E-mail: xyyin1965@163.com

Xiaojian BI
Employment
Ph.D. student at the School of Physical Education and Health, East China, Normal University, Shanghai, China
Degree
MSc
Research interests
Obesity, Physical fitness, Children and adolescents, Executive function, High altitude.
E-mail: cbi1985@126.com

Yuqiang LI
Employment
Staff at the School of Physical Education and Health, East China Normal University, Shanghai, China
Degree
PhD
Research interests
Obesity, Physical fitness, Children and adolescents, Physical activity.
E-mail: liyuqiang123@126.com

Yi SUN
Employment
Doctoral candidate at the School of Physical Education and Health, East China Normal University, Shanghai, China
Degree
MSc
Research interests
Physical fitness, Nutrition status, Children and adolescents
E-mail: sunyi0084@163.com

Ting ZHANG
Employment
Doctoral candidate at the School of Physical Education and Health, East China Normal University, Shanghai, China
Degree
MSc
Research interests
Physical fitness, Nutrition status, Children and adolescents
E-mail: noway1982@163.com

Xiaofang YANG
Employment
Doctoral candidate at the School of Physical Education and Health, East China Normal University, Shanghai, China
Degree
MSc
Research interests
Physical fitness, Nutrition status, Children and adolescents
E-mail: fangxiaoyang2004@126.com

Ming LI
Employment
Doctoral candidate at the School of Physical Education and Health, East China Normal University, Shanghai, China
Degree
MSc
Research interests
Physical fitness, Nutrition status, Children and adolescents
E-mail: liming23416@163.com

Yuan LIU
Employment
Staff in College of Economics and Management, Shanghai Institute of Technology, Shanghai, China
Degree
MSc
Research interests
Obesity, Physical fitness, Children and adolescents, Physical activity.
E-mail: yliu0809@163.com
Junfang CAO
Employment
Undergraduate at the School of Physical Education and Health, East China Normal University, Shanghai, China
Degree
BSc
Research interests
Obesity, Physical fitness, Children and adolescents, Physical activity.
E-mail: cjf17321009109@163.com

Ting YANG
Employment
Undergraduate at the School of Physical Education and Health, East China Normal University, Shanghai, China
Degree
BSc
Research interests
Obesity, Physical fitness, Children and adolescents, Physical activity.
E-mail: wo646591390@outlook.com

Yaru GUO
Employment
Undergraduate at the School of Physical Education and Health, East China Normal University, Shanghai, China
Degree
BSc
Research interests
Obesity, Physical fitness, Children and adolescents, Physical activity.
E-mail: 17321210960@163.com

Ge SONG
Employment
Undergraduate at the School of Physical Education and Health, East China Normal University, Shanghai, China
Degree
BSc
Research interests
Obesity, Physical fitness, Children and adolescents, Physical activity.
E-mail: 10131330122@stu.ecnu.edu.cn

Xiaojian Yin
The School of Physical Education and Health, East China, Normal University, Shanghai, China