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Abstract 
Self-massage using foam rollers, sticks, or balls has become a pop-
ular technique to enhance joint range of motion (ROM). Although 
increases are reported to be larger in females than males, the mech-
anisms of this observation are unclear. The present study aimed to 
investigate the effect of roller massage (RM) on ROM, passive tis-
sue stiffness, and neurophysiological markers as a function of sex. 
Males (n = 15, 22.8 ± 2.9 yrs.) and females (n = 14, 21.1 ± 0.7 yrs.) 
performed three 60-second bouts of calf RM. Outcomes assessed 
pre-, and post-intervention included passive dorsiflexion (DF) 
ROM, passive tissue stiffness, passive torque, DF angle at the first 
stretch sensation, shear elastic modulus, and spinal excitability. 
DF ROM (+35.9 %), passive torque at DF ROM (+46.4 %), DF 
angle at first stretch sensation (+32.9 %), and pain pressure thresh-
old (+25.2 %) increased in both groups (p<.05) with no differences 
between males and females (p > 0.05). No changes were observed 
for passive stiffness, shear elastic modulus, and spinal excitability 
(p > 0.05). Roller massage may increase ROM independently of 
sex, which, in the present study, could not be ascribed to alterations 
in passive stiffness or neurophysiological markers. Future studies 
may further elucidate the role of sensory alterations as possible fac-
tors driving RM-induced changes in flexibility. 
 
Key words: Shear elastic modulus; dorsiflexion range of motion; 
stretch tolerance; passive torque; pain pressure threshold; H/M 
ratio.

 
 
Introduction 
 
Self-massage treatments using foam rollers, sticks, and 
balls have gained popularity in the sports, fitness, and re-
habilitation sector. A plethora of studies demonstrated the 
effectiveness of related techniques to increase range of mo-
tion (ROM) (Krause et al., 2019; MacDonald et al., 2013; 
Wilke et al., 2019), reduce exercise-induced fatigue (de 
Benito et al., 2019; Fleckenstein et al., 2017), and alleviate 
muscle soreness/damage (Nakamura et al., 2020; Romero-
Moraleda et al., 2019). Notably, in contrast to static stretch-
ing, rolling treatments do not induce declines in athletic 
performance parameters such as muscle strength, sprint 
speed, and jump height (Skinner et al., 2020; Wiewelhove 
et al., 2019), thus being of particular interest to athletes.  

A meta-analysis investigating the acute effects of 
foam rolling on ROM showed that it might be less effective 
in males than females (Wilke et al., 2020). However, to 
date, the mechanisms underlying this sex difference remain 

unclear. From a theoretical point of view, an increase in 
ROM after foam rolling could stem from both changes in 
passive soft tissue stiffness and neurophysiological altera-
tions. Solid evidence suggests that foam rolling decreases 
the compressive stiffness of the anterior thigh (Baumgart 
et al., 2019; Wilke et al., 2019), Hamstring muscles 
(Morales-Artacho et al., 2017), and iliotibial tract (Mayer 
et al., 2019). Yet, some studies did not find significant 
changes in passive tensile stiffness of the anterior thigh 
(Krause et al., 2019) or compressive stiffness of the medial 
gastrocnemius muscle (MG) (Nakamura et al., 2021a), 
which suggests that foam rolling-induced ROM increases 
may also be due to sensory factors (i.e., altered stretch tol-
erance) (Behm and Wilke, 2019). Regarding neurophysio-
logical changes, a previous study by Young et al. (2018) 
showed decreased H-reflex during roller massager (RM) 
application (Young et al., 2018). The authors proposed that 
the increases in ROM and pain pressure threshold (PPT) 
after the intervention could be attributed to inhibition at the 
spinal level. However, as the decreased H-reflex was re-
stored immediately after rolling, this seems questionable.  

In view of the still uncertain relative contributions 
of tissue-specific, sensory and neural mechanisms to roll-
ing-induced ROM increases and the unexplained effective-
ness differences between male and female, the present 
study aimed to investigate the effect of RM on ROM, pas-
sive tissue stiffness, PPT, and neurophysiological response 
as a function of sex.  
 
Methods 
 
Experimental design and ethics 
A randomized, two-armed parallel-group design with re-
peated measures was used to investigate sex differences in 
the response of the passive tissue properties of the plantar 
flexors and spinal excitability after RM. All participants 
were fully informed about the procedures and purpose of 
the study and provided with written informed consent. The 
Ethics Committee of the Niigata University of University 
of Health and Welfare, Niigata, Japan (Procedure #18304), 
approved the study, which complied with the Declaration 
of Helsinki requirements. 

Participants visited the laboratory three times. The 
first session was used for familiarization with the RM pro-
tocol and the passive ROM and PPT measurements, since 
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all participants were not familiar with RM intervention. 
The following two sessions included the actual experi-
ments. Here, in random order and with at least 72 hours of 
a wash-out, either passive properties (measurement order: 
dorsiflexion (DF) ROM, first stretch sensation (FSS), shear 
elastic modulus, and PPT) or spinal excitability (H and M 
wave) measurements were performed before and after the 
RM intervention. In all measurements, based on a previous 
study (Young et al., 2018), after the baseline measurement 
and before the RM intervention (PRE), a 10-minute break 
was included with the participants adopting a prone posi-
tion. After this 10-minute break, the RM intervention with 
three 60-second bouts of RM and 30-second breaks in be-
tween was applied. Two minutes after the RM intervention, 
post measurements were conducted (POST). 
 
Participants 
Recruitment was performed using flyers and word of 
mouth. Fifteen males (mean ± SD: age, 22.8 ± 2.9 years; 
height, 1.70 ± 0.04 m; body mass, 63.4 ± 6.4 kg) and 14 
females (age, 21.1±0.7 years; height, 1.60 ± 0.07 m; 
weight, 52.0 ± 9.3 kg) volunteered to participate. None of 
the enrolled individuals had a history of neuromuscular dis-
ease or musculoskeletal injury involving the lower extrem-
ities. All participants had not been involved in any regular 
resistance or flexibility training in the last 6 months. Sam-
ple size calculation was performed according the study of 
Czuppon et al. (2017) who reported a large magnitude of 
difference in ROM between the males and females. Hence, 
the sample size required for a two-way repeated measures 
analysis of variance (ANOVA) (effect size = 0.40 [large], 
α error = 0.05, and power = 0.80) using G* power 3.1 soft-
ware (Heinrich Heine University, Düsseldorf, Germany) 
was more than 14 participants. 
 
Roller massager (RM) intervention 
The RM intervention was applied using a roller massager 
(Theraband, Akron, OH). Initially, participants were posi-
tioned prone on a treatment bed. An examiner moved the 
RM forward and backward on the muscle belly of the MG. 
The velocity of the applied strokes was controlled with a 
metronome set at 60 bpm. At each beep, the examiner ei-
ther moved the massager one stroke up or down. The in-
tensity was steered based on the participants’ feedback, tar-
geting a discomfort of 7/10 on a numerical rating scale (0 
representing no discomfort and 10 representing maximal 
discomfort), and the participants received three 60-second 
sets of RM with 30-second breaks between sets (Behm et 
al., 2020; Kiyono et al., 2020a). 
 
Dorsiflexion range of motion and passive torque 
During DF ROM measurements, the participants were in 
the prone position with a 0° knee angle. The measured foot 
was attached to a dynamometer’s (Biodex System 3.0, Bi-
odex Medical Systems Inc., Shirley, NY, USA) footplate. 
Using the continuous passive motion function, the device 
moved the ankle into passive dorsiflexion at a speed of 
5°/s, starting from a 30° plantarflexion (i.e., anatomical 
neutral position was 0°). The measurements were per-
formed until the participants felt discomfort, stopping the 
dynamometer by activating the safety trigger (Kiyono et 

al., 2020a). The angle achieved at this point was defined as 
the DF ROM, and the passive torque at DF ROM was doc-
umented as the sensory perception index. In addition, we 
calculated the passive stiffness of the muscle-tendon unit 
as the change in the passive torque from the neutral ankle 
position (0°) to the least dorsiflexion angle before and after 
the RM intervention divided by the change of the joint an-
gle (Konrad et al., 2017). 

 Based on previous studies (Konrad and Tilp, 
2014), two warm-up cycles were performed PRE-
measurement, avoiding a conditioning effect of the passive 
dorsiflexion test on the passive stiffness. After the two 
warm-up cycles, DF ROM and passive torque were meas-
ured twice, utilizing the averages for further analysis. We 
confirmed that there was no heel raise during the DF ROM 
measurements during the familiarization cycles and meas-
urements. Throughout the passive dorsiflexion test, the 
participants were requested to relax completely, not gener-
ating any voluntary resistance to the applied stretch. The 
absence of voluntary contraction was verified by monitor-
ing electromyography (see below). 
 
Joint angle at first stretch sensation  
The FSS angle was defined as the first self-perceived 
stretch sensation during the DF ROM measurements. The 
participants were instructed to stop the passive movement 
at the angle of the FSS using the safety trigger (Krause et 
al., 2019). FSS angle was measured twice, using the aver-
age value for further analysis. 
 
Shear elastic modulus of the medial gastrocnemius 
(MG) 
The MG shear elastic modulus was measured by means of 
an ultrasonic shear wave elastography imaging device 
(Aixplorer Supersonic Imagine, Aix-en-Provence, France) 
with a SL10-2 linear probe. Measurements were taken at 
an anatomical neutral ankle position (0°), which is the 
same position as the DF ROM measurements. The MG 
shear elastic modulus was assessed at 30% of the lower leg 
length from the popliteal crease to the lateral malleolus 
near the point of the lower leg’s maximal cross-sectional 
area (Nakamura et al., 2019). The size of the region of in-
terest was 10 × 20 mm2 near the center of the MG, with a 
5-mm-diameter-circle analysis area at the center of the re-
gion (Saeki et al., 2019). Elastography images of the MG 
long axis were obtained twice. Based on previous studies 
(Kiyono et al., 2020a; Nakamura et al., 2019), the shear 
elastic modulus was calculated by dividing the obtained 
Young’s modulus by 3, while obtaining the ultrasound 
measurements twice and using the average shear elastic 
modulus value for analysis. 
 
Pain pressure threshold (PPT) 
For the PPT measurements, we used an algometer 
(NEUTONE TAM-22 (BT10); TRY ALL, Chiba, Japan). 
The participants adopted a prone position on the treatment 
bed, again similar to the DF ROM measurements, with the 
ankle joint at 20° plantarflexion. The metal rod of the al-
gometer was used to compress the soft tissue in the meas-
urement area, which is the same location with shear elastic 
modulus assessment. The participants were instructed to 
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immediately press a trigger when pain rather than just pres-
sure was felt, with the value (kilograms per square centi-
meter) from the device, at this time point, corresponding to 
the PPT. We used the mean value of the three repeated 
measurements with a 30-second interval for data analysis 
(Kim and Lee, 2018; Naderi et al., 2020). 
 
Electromyography and spinal cord motoneuron excita-
bility assessment 
The electromyographic activity of the soleus muscle was 
recorded using self-adhesive electrodes with a recording 
surface (Ambu, Blue Sensor N). Prior to the measure-
ments, the skin was cleaned with alcohol, improving con-
ductivity. Electrodes were placed on the soleus according 
to the SENIAM recommendations (Hermens et al., 2000), 
with the ground electrode placed between the electrical 
stimulation and the surface electromyogram electrodes. 
Electromyographic activity was filtered with a 10–1000 Hz 
band-pass filter (Fa-DL-720-140, 4Assist, Tokyo, Japan), 
the common mode rejection ratios>110 dB, and 5.1MΩ in-
put impedances. The electromyographic activity was digi-
tally stored (10 kHz sampling rate) on a personal computer 
for offline analysis performed using PowerLab 8/30 and 
LabChart 7 (AD Instruments, Colorado Springs, CO, 
USA). In the passive dorsiflexion test, we monitored the 
soleus muscle activity to verify inactivity. 

 We induced nerve stimulation using a constant-
current stimulator (Isolator SS-104 J: Nihon Kohden Cor-
poration) targeting the tibial nerve using 1-ms-square 
pulses. Based on previous research (Blazevich et al., 2014; 
Kiyono et al., 2020b; Stutzig and Siebert, 2017), the tibial 
nerve, selectively stimulated in a monopolar manner, in-
duced soleus H-reflex and M waves. The anode was placed 
on the patella, and the cathode on the popliteal fossa over-
lying the nerve positioned to provide the greatest H wave 
amplitude at the smallest stimulus intensity, which was 
identified by stimulating the different skin surface sites 
with relatively low currents. Electrodes were attached to 
the skin using a surgical tape, preventing unwanted move-
ment during testing. 

The H/M recruitment curves were assessed before 
and after the RM sessions. At the beginning of each, the H-
reflex and M wave recruitment curves were measured un-
der resting conditions to determine the H-reflex (Hmax) 
and M wave (Mmax) maximum amplitudes. The stimula-
tions were increased by 0.5 milliamps every 10 s until 
Mmax was reached, retaining the corresponding intensity 
for all stimulations for analysis. The H/M ratio, a spinal 
excitability index, was calculated from the measured H and 
M waves (Blazevich et al., 2014; Stutzig and Siebert, 
2017). 
 

Statistical analysis 
Descriptive data are presented as means ± SD. The normal 
distribution of all variables was tested by means of the 
Shapiro-Wilk test. Comparisons of PRE values between 

males and females were determined by the unpaired t-test. 
In case of significant differences, relative changes (%) 
were used in the following steps (Mann-Whitney-U-test). 
If there were no significant differences between PRE val-
ues, a split-plot 2x2 ANOVA [time (PRE vs. POST) × gen-
der [male vs. female]) was used to investigate the interac-
tions and main effects. If there was a main effect for time, 
post hoc paired t-tests with Bonferroni correction were per-
formed to reveal PRE-POST changes in each group. The 
effect size was calculated as a difference in the mean value 
between PRE and POST divided by the pooled standard 
deviation (SD) with effect sizes of 0.00–0.19, 0.20–0.49, 
0.50–0.79, and ≥0.80 being considered trivial, small, mod-
erate, and large, respectively (Cohen, 1988). Finally, we 
investigated the correlation between changes in DF ROM 
and in each variable using Spearman’s rank correlation co-
efficient. The significance threshold was set to α=0.05. We 
used SPSS version 24.0 (IBM Corp., Armonk, NY, USA) 
for statistical analyses. 
 
Results 
 
Comparison of the pre-intervention values between 
males and females 
All values are shown in Table 1. Unpaired t-tests showed 
that passive stiffness in males was significantly higher than 
that in females (p < 0.01, d = 1.12). No differences were 
found for the remaining variables. 
 
Changes in all variables after the RM intervention 
The Mann-Whitney-U-test did not yield a significant dif-
ference in the relative pre-post changes between sexes re-
garding passive stiffness (male: −1.2 ± 13.0% vs. female: 
5.2 ± 13.5%, p=0.73, d = 0.48). Similarly, the split-plot 
ANOVAs revealed no significant interaction effects for the 
other variables (Table 1). However, main effects of time 
were found regarding DF ROM, passive torque at DF 
ROM, FSS, and PPT. Post-hoc testing showed that DF 
ROM, passive torque at DF ROM, FSS, and PPT increased 
in both males and females. No main effects occurred for 
the MG shear elastic modulus and H/M ratio. 
 
The relationship between the changes in DF ROM and 
all variables 
Significant correlations were observed between the 
changes in DF ROM and passive torque at DF ROM in 
both, males and females (Figure 1A: rs = 0.779, p < 0.01; 
Figure 1B: rs = 0.713,  p< 0.01, respectively). Conversely, 
there were no significant correlations with passive stiffness 
(male: rs = −0.101, p = 0.60; female: rs = 0.02, p = 0.95), 
FSS (male: rs = 0.432, p = 0.11; female: rs = 0.411; p = 
0.13), PPT (male: rs = 0.381, p = 0.16; female: rs = −0.202, 
p = 0.47), MG shear elastic modulus (male: rs = 0.107, p = 
0.70; female: rs = 0.193, p = 0.49), and H/M ratio (male: rs 

= 0.464, p = 0.08; rs = −0.275; p = 0.32). 
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Table 1. The changes in the passive dorsiflexion range of motion (DF ROM), passive stiffness, passive torque at DF ROM, first 
stretch sensation, pain pressure threshold (PPT), shear elastic modulus of medial gastrocnemius muscle, and H/M ratio before 
(PRE) and after (POST) the 3-minute roller massage intervention in both male and female participants. Effect sizes (Cohen’s 
d for t tests and partial η2 (ηp2) for a split-plot 2x2 analysis of variance (ANOVA)) are listed in the second column for each 
parameter. 

Male (N = 15) Female (N = 14) ANOVA results 
PRE POST PRE POST Interaction effect Main effect for time

DF ROM (°) 
27.0 ± 11.7 30.9 ± 10.1* 32.4 ± 5.5 37.4 ± 4.6** F = 0.17, p = 0.69 F = 29.5, p < 0.01 

d = 0.36 d = 0.94 ηp2 < 0.01 ηp2 = 0.513 

Passive stiffness (Nm/°) 
0.71 ± 0.21 0.70 ± 0.20 0.51 ± 0.15# 0.53 ± 0.14 N/A N/A 

d = 0.06 d = 0.13 N/A N/A 

Passive torque at DF ROM (Nm)
24.4 ± 12.3 28.5 ± 13.2* 18.0 ± 7.8 23.0 ± 8.4** F < 0.01, p = 0.99 F=8.0, p < 0.01 

d = 0.32 d = 0.62 ηp2 < 0.01 ηp2 = 0.222 

First Stretch Sensation (°) 
12.8 ± 10.5 17.7 ± 10.6* 19.6 ± 7.1 25.7 ± 5.7** F = 0.31, p = 0.86 F = 23.6, p < 0.01 

d = 0.47 d = 0.95 ηp2 < 0.01 ηp2 = 0.457 

PPT (kg) 
3.0 ± 1.1 3.6 ± 1.3** 2.5 ± 0.9 3.0 ± 1.1** F = 0.12, p = 0.73 F = 23.3, p < 0.01 

d = 0.55 d = 0.54 ηp2 < 0.01 ηp2 = 0.455 

Shear elastic modulus (kPa) 
8.9 ± 1.1 9.5 ± 1.5 9.3 ± 1.8 9.9 ± 1.5 F = 0.06, p = 0.81 F = 3.6, p = 0.07 

d = 0.46 d = 0.39 ηp2 < 0.01 ηp2 = 0.113 

H/M ratio 
0.80 ± 0.29 0.76 ± 0.33 0.63 ± 0.30 0.57 ± 0.27 F = 1.07, p = 0.31 F = 1.70, p = 0.20 

d = 0.13 d = 0.20 ηp2 = 0.037 ηp2 = 0.202 
*: p < 0.05, **: P < 0.01: significant difference from the PRE value. #: p < 0.05: significant difference between male and female at PRE value 

 
 

 
 

Figure 1. The correlations in the changes in the dorsiflexion range of motion (DF ROM) and passive torque at DF ROM 
after roller massage in both male (A) and female (B). 

 
Discussion 
 
To the best of our knowledge, our study is the first to in-
vestigate the mechanical, sensory, and neurophysiological 
correlates of sex differences in ROM increases following 
RM. Our RM intervention enhanced ROM and PPT while 
modifying stretch sensation. However, interestingly, there 
were no sex differences in changes after the RM interven-
tion. Moreover, there were no significant changes in pas-
sive stiffness and spinal excitability. Finally, there were 
high positive correlations between the changes in DF ROM 
and passive torque at DF ROM in both males and females, 
suggesting that increased ROM may rather stem from al-
tered sensory perception than changes in passive tissue 
stiffness or spinal excitability.  

 As indicated, the results of the present study re-
vealed increased DF ROM after a 180-second (three sets of 
60-second) RM intervention, which is generally in accord-
ance with previous works (Krause et al., 2019; Nakamura 
et al., 2021a; Wilke et al., 2019). However, in contrast to a 
recent meta-analysis (Wilke et al. 2020), there were no sig-
nificant sex differences. The reason for the discrepancy be-
tween the results of this study and those of previous works 

is obscure. However, there were no significant interaction 
effects of the RM intervention regarding the passive tissue 
properties, pain sensory perception, and spinal excitability. 
Thus, in the case of the calf muscle, there might be no sex 
difference in response to the RM intervention. In their anal-
ysis, Wilke et al. (2020) pointed out that the treatment re-
sponse of foam rolling interventions varies between mus-
cles, and the effect sizes were lower for the calf (ES = 0.43) 
than for the thigh muscles (hamstring, ES = 1.0; quadri-
ceps, ES = 0.83) (Wilke et al., 2020). It may hence be that 
sex differences do only manifest in those regions, and fu-
ture research in this area is warranted. 

In addition to the changes in DF ROM, the present 
study found significant alterations of the passive torque at 
DF ROM, FSS, and PPT, which is consistent with the 
available evidence (Aboodarda et al., 2015; Cavanaugh et 
al., 2017; Cheatham and Stull, 2019; Krause et al., 2019; 
Nakamura et al., 2021a). Moreover, there were significant 
positive correlations between the changes in DF ROM and 
passive torque at DF ROM. These results show that 
changes in stretch perception could represent an over-
looked contributor to ROM increases. The previous study 
showed that PPT was increased after a foam rolling              
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intervention on both the intervention and non-intervention 
sides and suggested global pain modulatory inhibition of 
pain after a foam rolling intervention (Aboodarda et al., 
2015). Hence, our results strengthen the assumption that 
foam rolling modifies sensory perception, e.g., via involve-
ment of the gate control theory, parasympathetic hyperac-
tivity, and diffuse noxious inhibitory control (Behm and 
Wilke, 2019). Although the exact mechanism in the present 
study is unknown, the aforementioned processes might 
also have caused the changes in FSS and PPT. 

Foam rolling and the RM intervention have been 
shown to modify the myofascial viscoelastic properties by 
mechanisms, such as viscosity reductions, loosening of 
myofascial restrictions, fluid changes, and cellular re-
sponses (Cheatham and Stull, 2019; Kelly and Beardsley, 
2016). Our study did not reveal significant changes in pas-
sive stiffness and shear elastic modulus, which is consistent 
with some of the previous studies (Krause et al., 2019; 
Nakamura et al., 2021a; Yoshimura et al., 2020). In con-
trast, other earlier trials showed that foam rolling decreases 
the passive stiffness of the anterior thigh (Wilke et al., 
2019) or the shear elastic modulus of the hamstring 
(Morales-Artacho et al., 2017). Again, these findings may 
be due to the treated body region (thigh vs. calf).  

Besides mechanical alterations in the soft tissue, 
previous research has also reported changes in spinal excit-
ability (Grabow et al., 2018). A previous trial investigated 
RM effects on the H-reflex, detecting a decrease during the 
intervention but an immediate return to baseline after its 
end (Young et al., 2018). As shown, the present study did 
not detect a change in the H/M ratio 2 minutes after the RM 
intervention. The discrepancy may be ascribed to the tim-
ing of intervention and measurements (during vs. post-in-
tervention). Therefore, RM-induced changes of spinal ex-
citability may occur during the intervention but cease im-
mediately after rolling. In summary, the change in inhibi-
tion at the spinal level could not be attributed to a ROM 
increase after the RM intervention. 

Some methodological aspects merit consideration. 
With 29 participants, our study had a rather small sample 
size and may have lacked statistical power. For instance, in 
some variables, descriptive increases amounted to up to 
10% but failed to meet the significance threshold despite 
medium effect sizes. It hence needs to be underlined that 
further confirmatory trials are needed to verify our explor-
atory assumptions. Another issue relates to the type of roll-
ing. We used an examiner to apply the soft tissue massage 
treatment. In clinical practice, most athletes will actively 
use foam rollers on their own. Therefore, comparative stud-
ies examining the validity of externally and self-applied 
pressure are urgent needs for the future. Also, we measured 
DF ROM with extended knees and muscle stiffness of the 
MG but H/M ratio at the soleus muscle. Future studies 
should consider creating congruency in this regard. Finally, 
there was no control condition (no intervention condition) 
in this study. The possibility that the PRE-measurement 
stimulation could contribute to the changes in DF ROM 
and stretch tolerance. However, our previous studies con-
firmed that these variables were highly reliable (Nakamura 
et al., 2021b; Sato et al., 2020), and the changes in these 
variables could be contributed by RM intervention. 

Conclusion 
 
The present study investigated the effect of RM on DF 
ROM, passive torque, FSS, shear elastic modulus, PPT, 
and H/M ratio, comparing the effects between males and 
females. Our results showed that DF ROM, passive 
torque at DF ROM, FSS, and PPT increased after the RM 
intervention independent of sex. The increases in DF 
ROM could only be related to changes in stretch percep-
tion (i.e., stretch tolerance) but not passive stiffness, FSS, 
PPT, or spinal excitability. Further research delineating 
mechanisms of foam rolling as well as their relative con-
tribution in males and females is therefore warranted. 
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Key points 
 

 We compared the effect of roller massage on range of 
motion, passive tissue stiffness, and neurophysiologi-
cal markers as a function of sex. 

 Roller massage intervention could increase range of 
motion and change in sensory, but could not change 
the passive tissue stiffness, and neurophysiological 
markers in both males and females.  

 The increases in range of motion could only be related 
to changes in stretch perception (i.e., stretch toler-
ance) but not passive tissue stiffness, or spinal excita-
bility. 
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