The Effect of Co-Ingestion of Carbohydrate with Milk after Exercise in Healthy Women: Study Considering the Menstrual Cycle

Tomoka Matsuda 1,2, Akira Ishikawa 1, Moe Kanno 1, Hazuki Ogata 3, Hyunjun Gam 1, Akiko Funaki 1,4, Nodoka Iegami 3, Mizuki Yamada 3, Mikako Sakamaki-Sunaga 3

1 Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan; 2 Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan; 3 Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan; 4 Department of Judo Therapy, Teikyo University of Science, Yamanashi, Japan

Abstract
This study aimed to assess the effects of co-ingestion of carbohydrate with milk (MILK) and isocaloric carbohydrate beverage (CHO) on post-exercise recovery and subsequent exercise capacity, considering the menstrual cycle. This study included 12 women with regular menstrual cycles who completed four test days, which started with glycogen-depleting exercise using a cycle ergometer in the early follicular phase (EF) and late follicular phase (LF), followed by 240 min of recovery from the ingestion of 200 mL of CHO or MILK every 30 min immediately after the exercise (POST0) until 210 min post-exercise. After 240 min, participants performed an exercise capacity test. Blood samples and breathing gas samples were collected before the exercise (PRE), POST0, and 120 (POST120) and 240 min after the end of exercise (POST240) to determine the concentrations of estradiol, progesterone, blood glucose, blood lactate, free fatty acid (FFA), and insulin and the respiratory exchange ratio, fat oxidation, and carbohydrate oxidation. The exercise time at exercise capacity test was not significantly different in terms of menstrual cycle phases and recovery beverages ingested. However, there was a significant positive correlation between the exercise capacity test and area under the curve (AUC) of FFA concentrations from POST0 to POST240 in each group (EF + CHO, p < 0.05; EF + MILK, p < 0.01; and LF + MILK, p < 0.05).

The AUC of FFA from POST120 to POST240 showed no difference between EF (CHO and MILK) and LF (CHO and MILK). However, the AUC of FFA concentrations from POST120 to POST240 was significantly greater in MILK (EF and LF) than that in CHO (EF and LF) (p < 0.05). In active women, circulating substrates and hormone concentrations during short recovery post-exercise are not affected by the menstrual cycle. However, MILK may affect circulating substrates during recovery and the exercise capacity after recovery.

Key words: Cycling, free fatty acid, late follicular phase, menstrual cycle, milk, recovery.

Introduction
Prolonged moderate-intensity exercise or high-intensity exercise causes significant muscle glycogen depletion, which leads to diminished performance (Bergström et al., 1967; Tsintzas et al., 1996; Alghannam et al., 2016b). Moreover, athletes must often perform multiple sessions or practice and strenuous activities with a short recovery time. Therefore, it is important to restore muscle glycogen quickly during short-term recovery.

The resynthesis of glycogen post-exercise is largely influenced by the type, amount, and timing of nutrient intake (Betts and Williams, 2010; Alghannam et al., 2018). Regarding intake timing, it is important to begin feeding immediately after exercise (Ivy et al., 1988). Additionally, carbohydrate supplementation should be continued throughout recovery with more rapid rates of muscle glycogen resynthesis typically achieved when carbohydrates are provided at relatively frequent intervals (every 15 - 30 min) (Doyle et al., 1993; Van Loon et al., 2000; Jentjens et al., 2001). The amount of carbohydrate intake is suggested, and ingesting approximately 1.2 g of carbohydrate kg BM-1 h-1 is likely to maximize muscle glycogen resynthesis, and additional carbohydrates will not further increase this glycogenic response (Alghannam et al., 2018). The addition of protein or fat to carbohydrates positively affects glycogen resynthesis and subsequent same-day endurance performance (Ivy et al., 2002; Williams et al., 2003; Betts et al., 2007; Alghannam et al., 2016a).

A previous study reported a significantly greater muscle glycogen concentration after 4-h of recovery when carbohydrate-protein supplementation was consumed immediately and 2-h post-exercise after the glycogen depletion exercise when compared with carbohydrate supplementation (Ivy et al., 2002). Ingestion of chocolate milk, which was often used as a carbohydrate-protein beverage, results in a longer exercise time after ingestion than after a carbohydrate replacement beverage ingestion or fluid replacement beverage when the participants performed a glycogen-depleting trial, a 4-h recovery period, and a cycle to exhaustion at 70% power at maximal oxygen uptake (Thomas et al., 2009). Recently, the effect of post-exercise milk-based beverage ingestion (milk and co-ingestion of carbohydrate with milk) has been investigated in some studies and has the same effect as that of post-exercise ingestion of carbohydrate-protein beverages and chocolate milk (Sudsar-Ard et al., 2014; Russo et al., 2019; James et al., 2019). Therefore, the use of milk that is cheaper and easier to help many athletes to recover quickly after exercise. However, little information exists on the effects of post-exercise milk consumption on substrate responses and subsequent performance in females (Sudsar-Ard et al., 2014; Russo et al., 2019).

Women have a menstrual cycle that is characterized by large differences in the serum concentrations of ovarian hormones, such as estrogen and progesterone (Jans De Jonge, 2003; Oosthuysen and Bosch, 2010). In particular, estrogen promotes increased fat oxidation (Kendrick et al., 1967; Tsintzas et al., 1996; Alghannam et al., 2016b). Moreover, athletes must often perform multiple sessions or practice and strenuous activities with a short recovery time. Therefore, it is important to restore muscle glycogen quickly during short-term recovery.
between the onsets of consecutive menses. The menstrual di-
three consecutive cycles to determine the average cycle
participants provided written informed consent for partici-
instructions to perform ovulation prediction testing for 7
phase. This kit was instructed to follow the manufacturer’s
participants prior to their participation in this study, and all
ethics committee of Nippon Sport Science University (No.
experimental procedures were conducted in accordance
with a minimum of 6 months prior to study inclusion (height: 1.59 ± 0.55 m; body weight: 55.1 ± 6.0
uptake [VO2max]: 37.9 ± 5.0 mL·kg⁻¹·min⁻¹; and maximal
load capacity [Wmax]: 172.9 ± 27.9 W). The partici-
participants had no history of smoking and chronic diseases. All
experimental procedures were conducted in accordance
with the Declaration of Helsinki and were approved by the
ethics committee of Nippon Sport Science University (No.
020-H045, date of approval; August 25, 2020). The study
purpose and experimental procedures were explained to all
participants prior to their participation in this study, and all
participants provided written informed consent for partici-
pation in the study. The participants wrote a menstrual cycle diary for
three consecutive cycles to determine the average cycle
length, which was calculated as the number of days be-
tween the onsets of consecutive menses. The menstrual di-
ary determined the approximate EF and estimated day of
ovulation, LF. The participants used an ovulation predictor
kit for luteinizing hormone surge detection (DO-TEST;
ROHTO Pharmaceutical Co., Ltd, Tokyo, Japan) during the
oesimal exercise test using a cycle er-
gometer (Corival1000S; Lode B. V. Medical Technology,
Groningen, The Netherlands). The incremental exercise
test was started at 75 W, which was increased by 25 W
every 3 min until complete exhaustion (Céline et al., 2011).
The participants maintained a pedal speed of 60 rpm on an
electronic metronome during the exercise. The determina-
tion criteria for all out at two or more points were as fol-
ows: the participants could no longer maintain the speci-
fied pedal speed of 60 rpm; the rating for perceived exer-
tion reached 20; the respiratory exchange ratio (RER) ex-
ceeded 1.2; and the participants almost reached the maxi-
mum heart rate estimated for age (i.e., 220 - age ± 5
beats/min). Wmax and VO2max were mostly unchanged by
the menstrual cycle (Redman, Scroop and Norman, 2003;
Smekal et al., 2007; Tsampoukos et al., 2010); therefore, the
Wmax and VO2max were randomly measured in each
menstrual cycle phase.

Methods

Participants

This study included 12 recreationally-active women (≥240
min·week⁻¹ of physical activity), having regular natural
menstrual cycles 26 - 38 days in length with no oral con-
traceptives use for a minimum of 6 months prior to study
inclusion (height: 1.59 ± 0.55 m; body weight: 55.1 ± 6.0
kg; body mass index: 21.7 ± 1.9 kg·m⁻²; maximal oxygen
uptake [VO2max]: 37.9 ± 5.0 mL·kg⁻¹·min⁻¹; and maximal
workload capacity [Wmax]: 172.9 ± 27.9 W). The partici-
pants had no history of smoking and chronic diseases. All
experimental procedures were conducted in accordance
with the Declaration of Helsinki and were approved by the
ethics committee of Nippon Sport Science University (No.
020-H045, date of approval; August 25, 2020). The study
purpose and experimental procedures were explained to all
participants prior to their participation in this study, and all
participants provided written informed consent for partici-
pation in the study. The participants wrote a menstrual cycle diary for
three consecutive cycles to determine the average cycle
length, which was calculated as the number of days be-
tween the onsets of consecutive menses. The menstrual di-
ary determined the approximate EF and estimated day of
ovulation, LF. The participants used an ovulation predictor
kit for luteinizing hormone surge detection (DO-TEST;
ROHTO Pharmaceutical Co., Ltd, Tokyo, Japan) during the
experimental cycle to verify each menstrual cycle
phase. This kit was instructed to follow the manufacturer’s
instructions to perform ovulation prediction testing for 7
consecutive days during one cycle. The results were con-
firmed by visual inspection of the test strip (participant)
and photographic records (experiment staff). Additionally,
serum estradiol and progesterone concentrations were
measured to determine each phase (Janse DE Jonge, Thompson and Han, 2019).

Preliminary testing

Wmax and VO2max of the participants were determined by
performing an incremental exercise test using a cycle er-
gometer (Corival1000S; Lode B. V. Medical Technology,
Groningen, The Netherlands). The incremental exercise
test was started at 75 W, which was increased by 25 W
every 3 min until complete exhaustion (Céline et al., 2011).
The participants maintained a pedal speed of 60 rpm on an
electronic metronome during the exercise. The determina-
tion criteria for all out at two or more points were as fol-
ows: the participants could no longer maintain the speci-
fied pedal speed of 60 rpm; the rating for perceived exer-
tion reached 20; the respiratory exchange ratio (RER) ex-
ceeded 1.2; and the participants almost reached the maxi-
mum heart rate estimated for age (i.e., 220 - age ± 5
beats/min). Wmax and VO2max were mostly unchanged by
the menstrual cycle (Redman, Scroop and Norman, 2003;
Smekal et al., 2007; Tsampoukos et al., 2010); therefore, the
Wmax and VO2max were randomly measured in each
menstrual cycle phase.

Experimental protocols

Our test was performed in four randomized crossover trials in
EF + CHO, LF + CHO, EF + MILK, and LF + MILK.
The participants arrived at the laboratory of the university at
0900. Muscle and liver glycogen depletion was estab-
lished by performing an intense exercise protocol using a
cycle ergometer (exercise one) (Figure 1). The exercise
protocol started with a 10-min warm-up at 50% Wmax.
Thereafter, the participants cycled for a 2-min block period
at alternating workloads of 90% and 50% Wmax. This
continued until the participants were no longer able to com-
plete a 2-min exercise period at 90% Wmax with a cycling
speed of 60 rpm. At this point, the high-intensity blocks
were reduced to 80% Wmax, and the same regimen was con-
tinued. When the participants were no longer able to com-
plete a 2-min block period at 80% Wmax, the exercise inten-
sity of the blocks was further decreased to 70% Wmax. The
participants were allowed to stop when the pedaling speed
could not be maintained at 70% Wmax. The exercise inten-
sity was reduced based on the rate of perceived exertion,
heart rate, and pedal speed (60 rpm). Each session was ter-
ninated when the participant could no longer maintain a
speed of 60 rpm for 15 s. This protocol has often been
used in previous studies as a muscle and liver glycogen de-
pletion protocol (Fuchs et al., 2016; Trommelen et al.,
2016). Carbohydrates are used during prolonged moderate-
to-high intensity exercise, and glycogen stored in muscle
and liver may deplete with longer exercise durations
(Bergström et al., 1967; Romijn et al., 1993). Therefore,
this exercise protocol and intensity was chosen for this
study. The participants were observed for the next 240 min,
during which the beverage was received with CHO or
MILK every 30 min until 210-min post-exercise. Blood
samples were measured, and gas samples were collected
before the exercise (PRE), immediately after exercise
(POST0), 120 min post-exercise (POST120), and 240 min
post - exercise (POST240). The cycling time to fatigue at
90%Wmax was assessed using an exercise capacity test (ex-
ercise two).
Diet and recovery beverage

All participants were instructed to maintain their normal diet as constant as possible during the experiment. Additionally, the participants recorded their food intake for 2 days prior to each trial. They abstained from meals 12 h prior and from alcohol and caffeine 24 h prior to each experiment. Water was provided ad libitum on each test day (1.0–2.0 L). However, the participants consumed the same amount of water on all test days. The intake of energy and macronutrient content of food and beverage items consumed for 2 days prior to each trial was analyzed using a nutrition analysis software (Excel Eiyokun, Kenpakusya, Tokyo, Japan) by a registered dietitian.

The two beverages were CHO, which was prepared by dissolving carbohydrate (KONA-AME for Athletes, HABA Laboratories Inc., Tokyo, Japan) in 200 mL of sports beverage (containing 0 g of protein, 0 g of fat, and 6.2 g of carbohydrate in 100 mL; Pocari Sweat, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan) and MILK, which was prepared by dissolving carbohydrate in 200 mL of milk (containing 3.7 g of protein, 1.9 g of fat, and 5.4 g of carbohydrate in 100 mL; Meiji Oishii Teishibounyu, Meiji Co., Ltd., Tokyo, Japan). The rate of carbohydrate intake in CHO was 1.3 g/kg BM⁻¹·h⁻¹, whereas MILK provided 1.0 g kg BM⁻¹·h⁻¹ of carbohydrate. MILK and CHO are isocaloric. These doses were based on previous findings that 1.0–1.2 g carbohydrate per kg body weight maximized muscle glycogen storage during short-term recovery after exercise, and additional carbohydrate more than 1.2 g per kg body weight will not further increase this glycogenic response (Alghannam et al., 2018). Participants were instructed to drink the registered beverage within 5 min.

Blood sample analysis

Blood samples from the antecubital vein were collected in 8 mL serum separation tubes. These samples were left to clot at room temperature before being centrifuged at 3,000 rpm for 10 min at 4°C. Serum was obtained from all blood samples and analyzed for concentrations of estradiol, progesterone, free fatty acids (FFA), and insulin. Serum estradiol and progesterone levels were analyzed using an chemiluminescent immunoassay method with kits (Abbott Japan Co., Ltd., Tokyo, Japan) [estradiol: detection range of 10–1,000 pg/mL, coefficient of variation (CV): < 7%; progesterone: detection range of 0.1–40.0 ng/mL, CV: < 10%]. FFA concentrations were measured by employing an ultraviolet method using kits (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) (detection range: 0.01–4.00 mEq/L, CV: < 1.5%). Furthermore, serum samples were analyzed for insulin using chemiluminescent immunoassay with kits (Abbott Japan Co., Ltd., Tokyo, Japan) (detection range of > 0.5 μU/mL, CV: < 2.5%). Lactate in whole blood was measured using a portable blood lactate analyzer (Lactate Pro2; Arkray, Tokyo, Japan) (detection range: 20–600 mg/dL, CV: < 2.8%). Blood glucose was determined using a glucose analyzer (Glucocard Diameter-alpha GT-1661; Arkray, Kyoto, Japan) (detection range: 0.5–25.0 mmol/L, CV: < 4.0%).

Gas analysis

RER, carbohydrates, and fat oxidation were measured using an expired gas analyzer (AE310-S Aero monitor; Minato Medical Science, Osaka, Japan) and breath-by-breath method. After 2 min of breathing equilibration, the average values for oxygen consumption (VO₂) and carbon dioxide production (VCO₂) were calculated from 3 min of gas collection at each time period (Qin et al., 2017). The oxidation of carbohydrates [1] and fats [2] was calculated from the gas analysis results with the following formula (Jeukendrup and Wallis, 2005):

\[
[1] = 4.585 \text{VCO}_2 - 3.226 \text{VO}_2 \\
[2] = 1.695 \text{VO}_2 - 1.701 \text{VCO}_2
\]

Statistical analyses

Sample size estimation was based on previous data, and a moderate effect size was calculated using G*power 3.1.9.4. A sample size of nine in a crossover design would provide a statistical power above 95% with an α-level of 0.05. Therefore, we recruited 12 participants to ensure adequate power and ample data sets. The experimental days and serum estradiol and progesterone concentrations at PRE were analyzed using the Friedman test to assess differences in menstrual cycle and recovery beverages as a factor. If the result was significant, the Wilcoxon signed rank tests were performed with a Bonferroni adjustment applied. Two days of food recording data, the area under the curve (AUC) of serum FFA concentrations, exercise time of the first exercise, and exercise capacity test were analyzed using one-way repeated-measures analysis of variance with menstrual cycle and recovery beverages as factors. Blood glucose, blood lactate, serum FFA, and serum insulin concentrations were analyzed using a two-way repeated-measures analysis.
analysis of variance with trial × time as factors. When a significant main effect or interaction was identified, data were subsequently examined using the Bonferroni post-hoc test. The Pearson correlation coefficients were used to determine the association between the AUC of serum FFA concentrations during recovery and exercise capacity tests. Statistical significance was set at p < 0.05. All statistical analyses were performed using SPSS version 28.0 (IBM, Armonk, NY, USA), and all data were reported as mean ± standard deviation.

Results

Experiment day and ovarian hormones
The experimental days of LF + CHO and LF + MILK were significantly longer than those of EF + CHO (vs. LF + CHO, p < 0.01; vs. LF + MILK, p < 0.01) and EF + MILK (vs. LF + CHO, p < 0.01; vs. LF + MILK, p < 0.01, Table1). However, no significant difference was found between the experimental days of EF + CHO and EF + MILK and those of LF + CHO and LF + MILK (p = 0.15) (Table1).

Serum estradiol concentrations at PRE were significantly higher in LF + CHO and LF + MILK than those in EF + CHO (vs. LF + CHO, p < 0.01; vs. LF + MILK, p < 0.01) and EF + MILK (vs. LF + CHO, p < 0.01; vs. LF + MILK, p < 0.01). Serum progesterone concentrations at PRE were not significant in EF + CHO, LF + CHO, EF + MILK, and LF + MILK (p = 0.21).

Diet for two days before the experiment
The intake of energy did not significantly differ between EF + CHO, LF + CHO, EF + MILK, and LF + MILK (EF + CHO, 1876.3 ± 346.9 vs. LF + CHO, 1673.2 ± 490.0 vs. EF + MILK, 1733.0 ± 605.3 vs. LF + MILK, 1732.8 ± 616.8 kcal/day, p = 0.64). Protein, fat, and carbohydrate intake ratios did not significantly differ between EF + CHO, LF + CHO, EF + MILK, and LF + MILK (protein: EF + CHO, 63.4 ± 13.3 vs. LF + CHO, 60.0 ± 20.4 vs. EF + MILK, 62.6 ± 28.1 vs. LF + MILK, 63.1 ± 25.0; fat: EF + CHO, 70.6 ± 21.6 vs. LF + CHO, 63.7 ± 29.7 vs. EF + MILK, 67.5 ± 26.7 vs. LF + MILK, 67.2 ± 36.2; carbohydrate: EF + CHO, 243.8 ± 44.0 vs. LF + CHO, 214.8 ± 62.3 vs. EF + MILK, 216.9 ± 71.9 vs. LF + MILK, 214.1 ± 59.1 g/day, protein: p = 0.97; fat: p = 0.92; carbohydrate: p = 0.38).

Exercise capacity
The total exercise time until exhaustion at glycogen-depleting exercise (exercise one) were not significantly different in terms of menstrual cycle phases and recovery beverages (EF + CHO, 74.3 ± 14.8 vs. LF + CHO, 69.6 ± 26.2 vs. EF + MILK, 70.7 ± 20.2 vs. LF + MILK, 64.3 ± 19.6 min, p = 0.35). Moreover, the exercise time at exercise capacity test (exercise two) was not significantly different in terms of menstrual cycle phases and recovery beverages (EF + CHO, 3.1 ± 0.9 vs. LF + CHO, 3.0 ± 1.2 vs. EF + MILK, 3.2 ± 1.3 vs. LF + MILK, 3.2 ± 1.2 min, p = 0.82) (Figure 2). However, there was a significant positive correlation between the exercise time of the exercise capacity test and the AUC of serum FFA concentrations from POST0 to POST240 (EF + CHO, r = 0.69, p < 0.05; LF + CHO, r = 0.59, p < 0.05; EF + MILK, r = 0.83, p < 0.01; LF + MILK, r = 0.65, p < 0.05).

Substrates utilization and hormone concentrations
No significant differences in blood glucose, blood lactate, serum FFA, and serum insulin concentrations at PRE, POST0, POST120, POST240 were observed between EF + CHO, LF + CHO, EF + MILK, and LF + MILK (blood glucose, trial: p < 0.05; time: p < 0.01; trial × time: p = 0.55; blood lactate, trial: p = 0.20; time: p < 0.01; trial × time: p = 0.06; serum FFA, trial: p = 0.80; time: p < 0.01; trial × time: p = 0.11; serum insulin, trial: p = 0.17; time: p < 0.01; trial × time: p = 0.64) (Table2). However, the AUC of serum FFA concentrations from POST120 to POST240 was significantly greater in EF + MILK and LF + MILK than in EF + CHO (vs. EF + MILK, p < 0.05; vs. LF + MILK, p < 0.05) and LF + CHO (vs. EF + MILK, p < 0.01; vs. LF + MILK, p < 0.01) (Figure 3).

The RER at POST120 was significantly lower in EF + MILK and LF + MILK than in EF + CHO. Additionally,
the RER at POST120 showed a significantly lower trend in EF + MILK than that in LF + CHO (trial, p = 0.23; time, p < 0.01; trial × time, p < 0.05). The average carbohydrate and fat oxidation at PRE, POST0, POST120, and POST240 were not significantly different between each menstrual cycle and beverage (carbohydrate, trial: p = 0.79; time: p < 0.01; trial × time: p = 0.38; fat, trial: p = 0.21; time: p < 0.01; trial × time: p = 0.52) (Table 2).

Table 1. Experiment day and ovarian hormone concentrations before exercise

<table>
<thead>
<tr>
<th>Experiment day</th>
<th>EF + CHO</th>
<th>LF + CHO</th>
<th>EF + MILK</th>
<th>LF + MILK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estradiol (pg/mL)</td>
<td>41.5 (34.5 – 49.0)</td>
<td>101.5 (63.8 – 286.5)</td>
<td>38.5 (25.3 – 42.5)</td>
<td>139.5 (95.3 – 209.5)</td>
</tr>
<tr>
<td>Progesterone (ng/mL)</td>
<td>0.2 (0.2 – 0.3)</td>
<td>0.3 (0.2 – 0.4)</td>
<td>0.2 (0.2 – 0.2)</td>
<td>0.4 (0.2 – 1.1)</td>
</tr>
</tbody>
</table>

Values are median (25 – 75%). EF, early follicular phase; LF, late follicular phase; CHO, carbohydrate beverage; MILK, co-ingestion of carbohydrate with milk. *p < 0.05 vs. EF + CHO; †p < 0.01 vs. EF + CHO; |p < 0.01 vs. LF + CHO; **p < 0.01 vs. POST0; ††p < 0.01 vs. POST0; ‡p < 0.05 vs. POST120; ‡‡p < 0.01 vs. POST120; §§p < 0.01 vs. EF + CHO.

Table 2. Substrate utilization and hormone concentrations.

<table>
<thead>
<tr>
<th>Trial</th>
<th>PRE</th>
<th>POST0</th>
<th>POST120</th>
<th>POST240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose (mg/dL)</td>
<td>EF + CHO 86.2 ± 5.4</td>
<td>96.2 ± 12.6 **</td>
<td>99.8 ± 11.1 **</td>
<td>74.3 ± 17.3 **,††††</td>
</tr>
<tr>
<td></td>
<td>LF + CHO 82.8 ± 5.8</td>
<td>90.4 ± 11.9 **</td>
<td>90.7 ± 15.4 **</td>
<td>73.0 ± 12.5 **,††††</td>
</tr>
<tr>
<td></td>
<td>EF + MILK 85.8 ± 5.3</td>
<td>95.6 ± 15.1 **</td>
<td>96.5 ± 14.8 **</td>
<td>81.1 ± 15.2 **,††††</td>
</tr>
<tr>
<td></td>
<td>LF + MILK 85.4 ± 7.2</td>
<td>101.3 ± 16.1 **</td>
<td>99.8 ± 16.0 **</td>
<td>78.9 ± 9.3 **,††††</td>
</tr>
<tr>
<td>Blood lactate (mmol/L)</td>
<td>EF + CHO 1.5 ± 0.3</td>
<td>3.7 ± 1.3 **</td>
<td>2.4 ± 0.5 **,††</td>
<td>2.3 ± 0.4 **,††,‡‡</td>
</tr>
<tr>
<td></td>
<td>LF + CHO 1.4 ± 0.2</td>
<td>5.0 ± 2.8 **</td>
<td>2.3 ± 0.6 **,††</td>
<td>2.4 ± 0.6 **,††,‡‡</td>
</tr>
<tr>
<td></td>
<td>EF + MILK 1.5 ± 0.4</td>
<td>4.4 ± 2.3 **</td>
<td>2.0 ± 0.3 **,††</td>
<td>1.9 ± 0.4 **,††,‡‡</td>
</tr>
<tr>
<td></td>
<td>LF + MILK 1.4 ± 0.3</td>
<td>4.6 ± 2.9 **</td>
<td>1.8 ± 0.4 **,††</td>
<td>2.0 ± 0.4 **,††,‡‡</td>
</tr>
<tr>
<td>Serum free fatty acids (µEq/L)</td>
<td>EF + CHO 0.44 ± 0.14</td>
<td>1.47 ± 0.39 **</td>
<td>0.13 ± 0.02 ** †† † †</td>
<td>0.08 ± 0.03 **,††,‡‡</td>
</tr>
<tr>
<td></td>
<td>LF + CHO 0.53 ± 0.19</td>
<td>1.45 ± 0.45 **</td>
<td>0.13 ± 0.04 **,† † † †</td>
<td>0.09 ± 0.03 **,††,‡‡</td>
</tr>
<tr>
<td></td>
<td>EF + MILK 0.41 ± 0.20</td>
<td>1.37 ± 0.40 **</td>
<td>0.19 ± 0.07 ** †† † † †</td>
<td>0.13 ± 0.03 **,††,‡‡</td>
</tr>
<tr>
<td></td>
<td>LF + MILK 0.54 ± 0.24</td>
<td>1.36 ± 0.39 **</td>
<td>0.18 ± 0.06 ** † † † †</td>
<td>0.13 ± 0.05 **,††,‡‡</td>
</tr>
<tr>
<td>Respiratory exchange ratio</td>
<td>EF + CHO 0.77 ± 0.05</td>
<td>0.81 ± 0.05</td>
<td>0.82 ± 0.02 *</td>
<td>0.86 ± 0.04 **,† † † †</td>
</tr>
<tr>
<td></td>
<td>LF + CHO 0.74 ± 0.05</td>
<td>0.80 ± 0.07</td>
<td>0.80 ± 0.04 *</td>
<td>0.85 ± 0.05 **</td>
</tr>
<tr>
<td></td>
<td>EF + MILK 0.77 ± 0.05</td>
<td>0.79 ± 0.04</td>
<td>0.77 ± 0.03 §§,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LF + MILK 0.74 ± 0.04</td>
<td>0.81 ± 0.05 **</td>
<td>0.78 ± 0.03 §§</td>
<td>0.87 ± 0.09 **</td>
</tr>
<tr>
<td>Average carbohydrate oxidation (g/min)</td>
<td>EF + CHO 0.08 ± 0.07</td>
<td>0.51 ± 0.27 **</td>
<td>0.13 ± 0.03 **,† † † † †</td>
<td>0.18 ± 0.05 **,† † † † †</td>
</tr>
<tr>
<td></td>
<td>LF + CHO 0.05 ± 0.07</td>
<td>0.59 ± 0.41 **</td>
<td>0.12 ± 0.06 **,† † † † †</td>
<td>0.18 ± 0.08 **,† † † † †</td>
</tr>
<tr>
<td></td>
<td>EF + MILK 0.08 ± 0.06</td>
<td>0.51 ± 0.31 **</td>
<td>0.08 ± 0.04 **,† † † † †</td>
<td>0.19 ± 0.08 **,† † † † †</td>
</tr>
<tr>
<td></td>
<td>LF + MILK 0.04 ± 0.04</td>
<td>0.63 ± 0.25 **</td>
<td>0.09 ± 0.03 **,† † † † †</td>
<td>0.20 ± 0.09 **,† † † † †</td>
</tr>
<tr>
<td>Average fat oxidation (g/min)</td>
<td>EF + CHO 0.09 ± 0.02</td>
<td>0.38 ± 0.21 **</td>
<td>0.08 ± 0.02 † †</td>
<td>0.06 ± 0.02 **,† † †</td>
</tr>
<tr>
<td></td>
<td>LF + CHO 0.10 ± 0.02</td>
<td>0.46 ± 0.18 **</td>
<td>0.08 ± 0.02 † †</td>
<td>0.06 ± 0.02 **,† † †</td>
</tr>
<tr>
<td></td>
<td>EF + MILK 0.09 ± 0.02</td>
<td>0.47 ± 0.18 **</td>
<td>0.10 ± 0.02 † †</td>
<td>0.06 ± 0.02 **,† † †</td>
</tr>
<tr>
<td></td>
<td>LF + MILK 0.10 ± 0.02</td>
<td>0.47 ± 0.19 **</td>
<td>0.10 ± 0.02 † †</td>
<td>0.06 ± 0.02 **,† † †</td>
</tr>
</tbody>
</table>

Values are mean ± SD. EF, early follicular phase; LF, late follicular phase; CHO, carbohydrate beverage; MILK, co-ingestion of carbohydrate with milk. PRE, before exercise; POST0, immediately after exercise; POST120, 120 min post-exercise; POST240, 240 min post-exercise. **p < 0.01 vs. PRE; †p < 0.05 vs. POST0; ††p < 0.01 vs. POST0; ‡p < 0.05 vs. POST120; ‡‡p < 0.01 vs. POST120; §§p < 0.01 vs. EF + CHO; |p < 0.1 vs. LF + CHO.

Discussion

We aimed to investigate the recovery effect of the ingestion of MILK after exercise in active women and compared the change in substrate utilization and exercise capacity test when consuming CHO or MILK during a short-term (4-h) post-exercise considering the menstrual cycle.

The first result of our study showed that the menstrual cycle did not affect substrates and exercise capacity tests when CHO or MILK was ingested during recovery. Estradiol increases fat utilization, reduces muscle and hepatic glycogen utilization, and prolongs exercise time to fatigue (Kendrick et al., 1987; Lavoie et al., 1987; Nicklas et al., 1989; Hackney, 1990; D’Eon et al., 2002). Although changes in substrate utilization using blood samples have not been shown before and after post-exercise recovery, a previous study demonstrated that muscle glycogen concentrations significantly increased in the luteal phase (LP) with high estrogen levels during the menstrual cycle compared to EF (Nicklas et al., 1989; McKay et al., 2007). Therefore, changes in ovarian hormones related to the menstrual cycle may also be associated with substrate utilization during recovery after exercise. Many studies have investigated the changes in ovarian hormones and menstrual cycles and the changes in substrate utilization and exercise capacity during rest and exercise; however, most have not examined the short recovery and/or changes in post-recovery performance. In a study in which muscle glycogen synthesis was increased by LP rather than FP during post-exercise recovery for 3 days, the percentage of dietary carbohydrate ingested by its participants was lower than that considered optimal for maximal glycogen resynthesis. However, no difference in muscle glycogen between EF and LP was observed 3 days after loading of equal energy carbohydrate (McLay et al., 2007). Regarding the acute recovery period, women in the EF of their menstrual cycle do not differ in
circulating substrates, such as blood glucose and lactate, and muscle glycogen synthesis when compared with males with low ovarian hormones after intake of matched amounts (per kilogram of body mass) of carbohydrate or a carbohydrate–protein beverage and food ingestion (Tarnopolsky et al., 1997). Furthermore, a study during exercise has reported that substrate metabolism and performance are influenced by the menstrual cycle phase, but glucose ingestion minimizes these effects (Campbell, et al., 2001). In this experiment, MILK and CHO intake conditions were based on how to maximize glycogen recovery during the recovery period, such as the amount of carbohydrates, exercise start time, and intake timing (Betts and Williams, 2010; Alghannam et al., 2018). Therefore, the effect of the menstrual cycle may be minimized if sufficient nutrients are available for substrate recovery during short recovery after exercise. Additionally, FFA concentrations increased for at least 3–6 h after the exercise (Magkos et al., 2009), and the changed transporters and insulin that affect substrate changes during post-exercise recovery (Holten et al., 2004). These changes were indicated by the effects of ovarian hormones, which change with the menstrual cycle, similar to those of the exercise, and the effects of exercise stimulation might be greater than the effects of estrogen. Therefore, our results suggest that there is no difference in the concentrations of circulating substrates, such as blood glucose, blood lactate, and serum FFA, hormone (serum insulin), RER, and carbohydrate and fat oxidation for MILK or CHO intake during recovery across different menstrual cycle phases because the influence of beverage intake and exercise is larger than the influence of the menstrual cycle during short recovery post-exercise.

The second result of our study showed the significant positive correlation between the exercise time of the exercise capacity test and the AUC of the serum FFA concentrations during recovery in all trials, especially in both phases of the menstrual cycle. In particular, the ingestion of MILK showed an increased AUC of FFA concentration from POST120 to POST240 than CHO. Therefore, increasing FFA concentrations during the short-term recovery can improve the exercise capacity after recovery, and FFA concentrations were increased more by ingesting MILK compared to CHO during recovery. Milk and dairy chocolate milk has been recently reported to be an effective post-exercise beverage because of its apparent ability to restore energy stores and enhance performance after a recovery period (Russo et al., 2019; James et al., 2019). These previous studies have shown that higher fat contents of milk and dairy chocolate milk compared with control beverages could have resulted in faster recovery and improved performance (Thomas et al., 2009). Previous studies have reported that muscle glycogen repletion has a high metabolic priority during recovery, and utilization of fat is essential to cover the energy expenditure in muscles (Brown et al., 2013; Lundsgaard et al., 2020). A sustained increase in FA oxidation during recovery may support the resynthesis of intramuscular triglycerides and the resynthesis of skeletal muscle glycogen stores from the available plasma glucose. Therefore, in the present study, higher fat oxidation and FFA concentrations during post-exercise recovery have allowed for the resynthesis of some intramuscular triglycerides and the replenishment of muscle glycogen due to MILK intake. Additionally, previous studies investigating recovery and performance have reported that increased glycogen synthesis during recovery improves exercise performance after recovery (Bergström et al., 1967; Tsintzas et al., 1996; Alghannam et al., 2016b). Although there was no difference in post-recovery exercise capacity tests between MILK and CHO ingestion in this study, a positive correlation was found between the AUC of FFA concentrations during the recovery and exercise capacity tests. Our study suggests that increased FFA concentrations during recovery restored the energy substrate faster and improved subsequent exercise capacity tests, and MILK intake was superior to CHO intake in terms of further increasing FFA concentrations during recovery. However, exercise that uses fat primarily as an energy source is a low-to-moderate endurance exercise. In previous studies, exercise performance after recovery has often been measured using low-to-moderate exercise intensity. Whether MILK intake is effective for the recovery of higher intensity exercise, such as in our study, remains unknown. Therefore, further research is required.

Blood glucose, blood lactate, and serum insulin concentrations showed no significant differences at all trials when either CHO or MILK was ingested during recovery. Previous studies have reported that the augmented insulin concentrations decreased blood glucose and increased muscle glycogen synthesis following combined carbohydrate-protein ingestion than carbohydrate ingestion alone (Williams et al., 2003; Betts and Williams, 2010). These studies showed that the congestion of protein has no further effect on glycogen synthesis when protein has been included in solutions providing carbohydrate at a lower ingestion rate (i.e., ≤0.8g/kg/h) and with adequate CHO intake (Betts and Williams, 2010; Burke, Van Loon and Hawley, 2017). Previous studies have shown the benefit of the combined carbohydrate-protein ingestion was due to the increase in available energy (Betts and Williams, 2010; Burke et al., 2017). This study was considered and performed to achieve the same effect of carbohydrate and the same energy intake between combined carbohydrate-protein ingestion and carbohydrate ingestion alone during recovery using MILK, which is easy for anyone to purchase and use. Therefore, the CHO and MILK trials had the amount of carbohydrate greater than 0.8 g/kg/h, which was adequate for carbohydrate intake during recovery. Our results showed the ingestion of MILK did not influence blood glucose, blood lactate, and serum insulin concentrations during recovery. However, as previously mentioned, the AUC of serum FFA concentrations during recovery was significantly different between CHO and MILK. Milk contains fat compared to CHO. Therefore, MILK ingestion may have increased circulating free fatty acids in the blood, suggesting that MILK ingestion during recovery led to a greater increase in serum FFA compared to CHO ingestion.

This study had some limitations. It was not possible to unify the types of CHO and/or adjust the amount of protein and fat because milk was used in this study. However, milk is easily available to anyone and is very convenient.
for use in the field. Counterbalancing was not possible because a minimum of 24 participants was required for counterbalancing, although this experiment was performed with calculated sample size. However, the order of the four trials differed for all 12 participants in this study. Moreover, we conducted multiple regression analysis between the order of experiments and each index, such as exercise duration and FFA concentrations. The results showed no significant differences in the order of the experiments and each index; for example, the exercise time of the exercise capacity test (P < 0.56; the AUC of serum FFA concentrations from POST0 to POST240: P < 0.73). Therefore, we believe that the order of the experiments is unlikely to have affected FFA concentrations or exercise performance. The participants in this study were not athletes, unlike those in previous studies. The intensity of the exercise may have been too high for a recreationally-active woman. However, we selected women who regularly performed endurance exercises and have previously confirmed that the current protocol can be implemented (Matsuda et al., 2020). Furthermore, this study is important because it considers the menstrual cycle phases. However, MILK increased the AUC of FFA concentrations from POST120 to POST240 compared to CHO, and increased AUC of FFA concentrations during recovery has improved exercise capacity. Our study shows that the menstrual cycle does not affect the post-exercise recovery of women who consume enough carbohydrates during recovery, but the recovery speed may be positively affected by MILK.

Conclusion

We investigated the effect of recovery after exercise using milk, considering the menstrual cycle in active women. The results indicated that MILK and CHO were not significantly different in terms of substrate utilization during recovery and exercise capacity tests after recovery in different menstrual cycle phases. However, MILK increased the AUC of FFA concentrations from POST120 to POST240 compared to CHO, and increased AUC of FFA concentrations during recovery has improved exercise capacity. Our study shows that the menstrual cycle does not affect the post-exercise recovery of women who consume enough carbohydrates during recovery, but the recovery speed may be positively affected by MILK.

Acknowledgements

We thank all the participants who volunteered for this study, as well as the team staff. This study was supported by the Japan Milk Academic Alliance and JSPS KAKENHI Grant Number JP20J13547. The experiments complied with the current laws of the country in which they were performed. The authors declare no conflicts of interest. The datasets generated and/or analyzed during the current study are not publicly available, but are available from the corresponding author, who was an organizer of the study.

References

Magkos, F., Mohammed, B.S., Patterson, B.W. and Mittendorf, B. (2009) Free fatty acid kinetics in the late phase of postexercise recovery: importance of resting fatty acid metabolism and exercise-induced energy deficit. Metabolism: Clinical and Experimental 58, 1248-1255. https://doi.org/10.1016/j.metabol.2009.03.023

Thomas, K., Morris, P. and Stevenson, E. (2009) Improved endurance capacity following chocolate milk consumption compared with 2 commercially available sport drinks. Applied Physiology, Nutrition and Metabolism 34, 78-82. https://doi.org/10.1139/h08-137

Key points

- MILK and CHO was not significantly different in substrate utilization during recovery and exercise capacity tests after recovery in the different menstrual cycle phases when women consume enough carbohydrates during recovery.
- MILK increased the AUC of FFA concentrations during recovery improved exercise capacity compared to CHO.
- Milk is an effective post-exercise beverage in healthy women.

AUTHOR BIOGRAPHY

Tomoka MATSUDA

Employment

Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan and Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan

Degree

PhD

Research interests

Menstrual cycle and conditioning, Performance, Exercise physiology

E-mail: mtomoka610@gmail.com
Akira ISHIKAWA
Employment
Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
Degree
MSc
Research interests
Menstrual cycle and fat metabolism, Nutrition
E-mail: 21pda01@nittai.ac.jp

Moe KANNO
Employment
Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
Degree
MSc
Research interests
Amenorrhea, Exercise physiology, Nutrition
E-mail: 19pma29@nittai.ac.jp

Hazuki OGATA
Employment
Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
Degree
MSc
Research interests
Strength training, Exercise physiology
E-mail: h-ogata@nittai.ac.jp

Hyounjun GAM
Employment
Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
Degree
MSc
Research interests
Oral contraceptive, Inflammation, Exercise
E-mail: 20pma06@nittai.ac.jp

Akiko FUNAKI
Employment
Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
Degree
MSc
Research interests
Menstrual cycle, Inflammation, Exercise physiology
E-mail: 20pda13@nittai.ac.jp

Nodoka IKEGAMI
Employment
Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
Degree
MSc
Research interests
Bone stress injury, Female athlete health
E-mail: ikegami-n@nittai.ac.jp

Mizuki YAMADA
Employment
Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
Degree
MSc
Research interests
Transgender health, Exercise physiology
E-mail: 21pda18@nittai.ac.jp

Mikako SAKAMAKI-SUNAGA
Employment
Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
Degree
PhD
Research interests
Menstrual cycle and conditioning, Exercise physiology
E-mail: sunaga@nittai.ac.jp

Tomoka Matsuda
7-1-1 Fukasawa, Setagaya-ku, Tokyo 158-8508, Japan