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Abstract 
Vibration foam rolling (VFR) intervention has recently gained at-
tention in sports and rehabilitation settings since the superim-
posed vibration with foam rolling can affect several physiological 
systems. However, the sustained effect and a comparison of the 
effects of different VFR vibration frequencies on flexibility and 
muscle strength have not been examined. Therefore, in this study, 
we aimed to investigate the acute and sustained effects of three 
60-s sets of VFR with different frequencies on knee flexion range 
of motion (ROM) and muscle strength of the knee extensors. Us-
ing a crossover, random allocation design, 16 male university stu-
dents (21.2 ± 0.6 years) performed under two conditions: VFR 
with low (35 Hz) and high (67 Hz) frequencies. The acute and 
sustained effects (20 min after intervention) of VFR on knee flex-
ion ROM, maximum voluntary isometric contraction (MVC-ISO) 
torque, maximum voluntary concentric contraction (MVC-CON) 
torque, rate of force development (RFD), and single-leg counter-
movement jump (CMJ) height were examined. Our results 
showed that knee flexion ROM increased significantly (p < 0.01) 
immediately after the VFR intervention and remained elevated up 
to 20 min, regardless of the vibration frequency. MVC-ISO and 
MVC-CON torque both decreased significantly (p < 0.01) imme-
diately after the VFR intervention and remained significantly 
lowered up to 20 min, regardless of the vibration frequency. How-
ever, there were no significant changes in RFD or CMJ height. 
Our results suggest that VFR can increase knee flexion ROM but 
induces a decrease in muscle strength up to 20 min after VFR at 
both high and low frequencies. 
 
Key words: Foam roller, flexibility, maximal voluntary muscle 
contraction, rate of force development, countermovement jump, 
prolonged effect.

 
 
Introduction 
 
Foam rolling (FR) intervention is now being widely used 
in sports and rehabilitation settings (Konrad et al., 2022b; 
Wiewelhove et al., 2019; Wilke et al., 2020). Moreover, it 
is believed that adding vibration serves as a facilitator for 
the FR intervention effect. Specifically, it is thought that 
that the superimposed vibration can affect several physio-
logical systems, such as skin receptors, muscle spindles, 
ligament proprioceptors, and joint mechanoreceptors (e.g., 
the Golgi tendon organ) (Moezy et al., 2008). In fact,      

previous studies have shown that FR with vibration (VFR) 
can increase joint range of motion (ROM) and decrease 
muscle stiffness without decreasing muscle strength or 
jump performance (Nakamura et al., 2021d; 2021e). A re-
cent meta-analysis also suggested that VFR can induce a 
larger increase in ROM than FR alone; however, there are 
few previous studies available (Wilke et al., 2020). With 
regard to the effect of VFR on muscle strength and athletic 
performance, a meta-analysis concluded that VFR has 
great potential to improve jump performance, agility, and 
muscle strength, but there were no significant results 
among the data currently available (Alonso-Calvete et al., 
2022). Although there is still room for further study, it is 
believed that VFR can be applied safely and effectively in 
sports and rehabilitation settings. 

Rate of force development (RFD) has been widely 
used for the evaluation of explosive strength (Maffiuletti et 
al., 2016; Rodríguez-Rosell et al., 2018). Since VFR can 
affect several physiological systems, VFR may also affect 
RFD in addition to muscle strength. Furthermore, Ander-
sen and Aagaard (2006) pointed out that RFD is influenced 
by different physiological factors in the early (less than 
100 ms) and late (more than 100 ms) phases of isometric 
contraction (Andersen and Aagaard, 2006). Through a de-
tailed investigation of the effect of VFR on RFD, it would 
be possible to investigate the effects of VFR on neuromus-
cular function in more detail. However, to the best of our 
knowledge, the effect of VFR on RFD, including both the 
early and late phases of RFD, is not clear. In addition, Ger-
mann et al. (2018) noted that the physiological and neuro-
muscular responses might differ when different frequen-
cies are applied. To date, previous studies have investi-
gated the effects of VFR on ROM, muscle strength, and 
jump performance at only one frequency, and it is unclear 
whether the effects of VFR vary with frequency. Further-
more, examining the sustained effects and comparing the 
effects of different frequencies of VFR could be useful for 
athletes and coaches in the fields of sports and rehabilita-
tion. Therefore, in this study, we aimed to investigate the 
acute and sustained effects of VFR with different frequen-
cies on knee flexion ROM, knee extensor muscle strength, 
RFD, pain pressure threshold (PPT), and single-leg coun-
termovement jump (CMJ) height. Our previous study 
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showed no significant differences between low and high 
VFR frequencies on the damaged muscle (Kasahara et al., 
2022b). Therefore, we hypothesized that there will be no 
significant difference in acute and sustained effects of VFR 
with different frequencies. 

 
Methods 
 
Experimental design 
A randomized, controlled, crossover experimental design 
was used to compare the time-course of changes after low-
frequency VFR (LF-VFR) and high-frequency VFR (HF-
VFR) on knee flexion ROM, PPT, maximum voluntary 
isometric contraction (MVC-ISO) torque, maximum vol-
untary concentric contraction (MVC-CON) torque, and 
CMJ height, for the dominant knee extensor. We measured 
the outcome variables in this order in all the time periods. 
The dominant leg was defined as the preferred leg for kick-
ing a ball. All participants visited the laboratory on two oc-
casions (LF-VFR and HF-VFR), with a break interval of 
>48 h between sessions. All variables were measured be-
fore (PRE), immediately after (POST), and 20 min after 
(20 min), for both the LF-VFR and HF-VFR interventions. 
 

Participants 
The sample size required for a two-way repeated-measures 
analysis of variance (ANOVA) (effect size = 0.25 [me-
dium], α error = 0.05, and power = 0.95) was calculated 
using G* power 3.1 software (Heinrich Heine University, 
Düsseldorf, Germany). The required number of partici-
pants was found to be more than 15 for this study. The par-
ticipants enrolled in this study were 16 sedentary healthy 
young male volunteers (age 21.2 ± 0.6 years; height 1.71 ± 
0.4 m; body mass 71.1 ± 11.7 kg) who had not performed 
habitual exercise activities for at least the past six months 
before the assessment. Participants who had a history of 
neuromuscular disease or musculoskeletal injury in the 
lower extremity were excluded. All subjects were fully in-
formed of the study’s procedures and purpose and provided 
written informed consent. The study was approved by the 
Ethics Committee of the Niigata University of Health and 
Welfare, Niigata, Japan (#18561). 
 

Knee flexion range of motion (ROM) 
Each participant was placed in a side-lying position with 
the non-dominant side on a massage bed, and the hip and 
knee of the non-dominant leg were flexed at 90° to prevent 
movement of the pelvis during the ROM measurements 
(Kasahara et al., 2022b; Konrad et al., 2022a; Nakamura et 
al., 2020b). The investigator brought the dominant leg to 
full knee flexion, with the hip joint in a neutral position. A 
goniometer was used to measure the knee flexion ROM 
twice, and the average value was used for the further anal-
ysis. 
 

Maximal voluntary isometric contraction (MVC-ISO) 
torque and rate of force development (RFD) measure-
ments 
MVC-ISO torque was measured at a 90° knee angle using  
the Biodex System 3.0 (Biodex Medical Systems, Shirley, 
NY, USA). Each participant was seated in the dynamome-
ter chair at an 80° hip flexion angle, with adjusted Velcro 

straps fixed over the trunk, pelvis, and thigh of the meas-
ured limb. After several warm-up submaximal knee exten-
sion contractions, the participant was instructed to perform 
knee extension as fast and hard as possible and to maintain 
the maximum effort for about 3 s (Ema et al., 2016). The 
trials were conducted two times, with a 60-s rest between 
each trial, and the average value of two MVIC torque 
measurements was adopted for further analysis. If there 
was more than a 5% difference between the first two MVC-
ISO measurements, a third MVC-ISO measurement was 
performed. Verbal encouragement was provided during all 
the tests. 

Torque signals were recorded on a computer 
through an A/D converter operating at 1 kHz (Pow-
erLab16/35, AD Instruments, Australia). Torque signals 
were low-pass filtered at 15 Hz using a fourth-order zero-
phase lag Butterworth filter (Aagaard et al., 2002; Ema et 
al., 2016; Nakamura et al., 2021c). The onset of knee ex-
tension was defined as the torque increasing by two stand-
ard deviations (SD) above baseline, and it was ensured that 
the torque did not fall below baseline throughout the con-
traction. The RFD was defined as the slope of the filtered 
time-torque curve over time intervals of 0–50, 0–100, and 
0–200 ms from the onset of plantar flexion (Aagaard et al., 
2002; Ema et al., 2016; Nakamura et al., 2021c). 
 

Maximal voluntary concentric contraction (MVC-
CON) torque measurement 
MVC-CON torque was measured at an angular velocity of 
60°/s for a ROM of 70° (20–90° knee angles) for three con-
tinuous MVC-CONs of knee extension (Kasahara et al., 
2022b; Nakamura et al., 2020b). For further analysis, the 
highest value among the three trials was adopted. Verbal 
encouragement was provided during all the tests. 
 

Countermovement jump (CMJ) height 
CMJ height was calculated from the flight time using a 
jump mat system (4Assist, Tokyo, Japan). Each participant 
started with the foot of the dominant leg on the mat, with 
their hands in front of their chest. From this position, the 
participant was instructed to dip quickly (eccentric phase), 
reaching a self-selected depth, and then jump as high as 
possible in the next concentric phase. The landing phase 
was performed on two feet. The knee of the uninvolved leg 
was held at approximately 90° of flexion (Fort-
Vanmeerhaeghe et al., 2016). After three familiarization 
repetitions, three sets of CMJs were performed and meas-
ured, and the maximum vertical jump height was used for 
further analysis. 
 

Pain pressure threshold (PPT) 
PPT measurements were carried out using an algometer 
(NEUTONE TAM-22 (BT10), TRY ALL, Chiba, Japan), 
with the participant in a supine position. The measurement 
position was set at the midpoint of the distance between the 
anterior superior iliac spine and the upper end of the patella 
of the dominant side (Kasahara et al., 2022b; Konrad et al., 
2022a). With continuously increasing pressure, the metal 
rod of the algometer was used to compress the soft tissue 
in the measurement area. The participant was instructed to 
immediately press a trigger when pain, rather than just 
pressure, was experienced. The value read from the device 
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at this time point (kilograms per square centimeter) corre-
sponded to the PPT. Based on previous studies (Kim and 
Lee, 2018; Naderi et al., 2020), the mean value (kilograms 
per square centimeter) of three repeated measurements 
(with a 30-s interval between each measurement) was taken 
for further analysis. 
 
High- and low-frequency vibration foam rolling inter-
ventions 
A foam roller (Stretch Roll SR-002, Dream Factory, 
Umeda, Japan) was used for the VFR intervention. Before 
the VFR intervention, a physical therapist instructed each 
participant on how to use the foam roller. For the familiar-
ization, each participant was allowed to practice using the 
foam roller three to five times on the non-dominant leg 
(non-intervention leg). The participant performed three 
sets of 60-s VFR in both conditions, with a 30-s rest be-
tween each set. This was conducted in accordance with the 
recommendations of Behm et al. (2020), to maximize the 
increase in ROM (Behm et al., 2020). The participant was 
instructed to get into the plank position, with the foam 
roller at the most proximal portion of the quadriceps of the 
dominant leg only. In this study, one cycle of VFR inter-
vention was defined as one distal rolling plus one subse-
quent proximal rolling movement, whereas the frequency 
was defined as 30 cycles for every 60-s set (hence a total 
of 90 cycles in three sets), measured using a metronome 
(Smart Metronome, Tomohiro Ihara, Japan). One cycle of 
VFR intervention was defined as between the top of the 
patella and the anterior superior iliac spine, and was con-
ducted under the direct supervision of the investigator 
(Kasahara et al., 2022b). The participant was asked to place 
as much body mass on the roller as was tolerable. The VFR 
intervention was performed at 35 Hz in the LF-VFR con-
dition and at 67 Hz in the HF-VFR condition (Kasahara et 
al., 2022b). 
 
Statistical analysis 
SPSS (version 24.0, SPSS Japan Inc., Tokyo, Japan) was  

used for the statistical analysis. The distribution of the data 
was assessed using a Shapiro-Wilk test, and it was con-
firmed that the data followed a normal distribution. For all 
the variables, a two-way repeated-measures ANOVA using 
two factors (test time [PRE vs. POST vs. 20 min] and con-
ditions [LF-VFR vs. HF-VFR]) was used to analyze the in-
teraction and main effects. Classification of effect size (ES) 
was set where ηp

2 < 0.01 was considered small, 0.02 - 0.1 
was considered medium, and more than 0.1 was considered 
to be a large effect size (Akiyama et al., 2016; Cohen, 
1988; Kasahara et al., 2022b).When appropriate, a post-
hoc analysis was conducted using paired t-tests with Bon-
ferroni correction to determine the difference between 
PRE, POST, and 20 min. Additionally we calculated the 
ES as differences in the mean value divided by the pooled 
SD between pre- and post-intervention in each group, an 
ES of 0.00 - 0.19 was considered as trivial, 0.20 - 0.49 as 
small, 0.50 - 0.79 as moderate, and ≥0.80 as large (Cohen, 
1988; Nakamura et al., 2020a). The significance level was 
set to 5%, and all the results are shown as mean ± SD. 

 
Results 
 
Table 1 lists the knee flexion ROM, MVC-ISO torque, 
RFD, MVC-CON torque, CMJ height, and PPT changes. 
The two-way repeated-measures ANOVA indicated no 
significant interactions for all the variables. However, there 
were main effects for time for knee flexion ROM (F = 59.3, 
p < 0.01, ηp

2 = 0.809), MVC-ISO torque (F = 16.5, p < 0.01, 
ηp

2 = 0.541), MVC-CON torque (F = 8.61, p < 0.01, ηp
2 = 

0.381), and PPT (F = 10.8, p < 0.01, ηp
2 = 0.437), but not 

for RFD (0 - 50 ms: F = 0.16, p = 0.85, ηp
2 = 0.006; 0 - 

100 ms: F = 0.861, p = 0.15, ηp
2 = 0.005; 0 - 200 ms: F = 

0.37, p = 0.37, ηp
2 = 0.012, respectively). 

The post-hoc test revealed that knee flexion ROM   
increased significantly (p < 0.01) and remained signifi-
cantly elevated up to 20 min. However, knee flexion ROM 
at 20 min was significantly lower than the POST ROM        
at  20  min  was  significantly  lower  than the POST value.

 
Table 1. Changes (mean ± SD) in knee flexion range of motion (ROM), maximal voluntary isometric contraction torque of knee extensor 
(MVC-ISO), rate of force development (RFD) at 0 - 50, 0 - 100, and 0 - 200 ms, maximal voluntary concentric contraction torque (MVC-
CON) at 60°/s, counter movement jump (CMJ) height before maximal eccentric contraction task (baseline), pre- and post-vibration foam 
rolling (VFR) intervention at both low-frequency (LF)- and high-frequency (HF) intervention. The two-way ANOVA results (T: time 
effect, C x T: condition x time interaction effect; F-value) and partial η2 (ηp

2) are shown in right column. 
 LF-VFR condition HF-VFR condition ANOVA results 
 PRE POST 20 min PRE POST 20 min P value, F value, ηp

2 
Knee flexion ROM 

(deg) 
131.5 ± 4.5 135.8 ± 5.0 133.7 ± 5.1 130.9 ± 6.6 135.6 ± 5.6 133.6 ± 6.3 

T: p < 0.01, F = 59.3, ηp
2 = 0.809

C x T: p = 0.748, F = 0.293, ηp
2 = 0.021

MVC-ISO 
(Nm) 

198.2 ± 31.2 189.4 ± 32.8 188.8 ± 29.5 199.7 ± 29.5 188.4 ± 33.5 185.8 ± 31.2
T: p < 0.01, F = 16.5, ηp

2 = 0.541
C x T: p = 0.81, F = 0.21, ηp

2 = 0.015
RFD at 0-50 ms 

(Nm/ms) 
0.44 ± 0.35 0.51 ± 0.31 0.51 ± 0.22 0.39 ± 0.28 0.54 ± 0.34 0.47 ± 0.26 

T: p = 0.27, F = 1.33, ηp
2 = 0.044

C x T: p = 0.85, F = 0.16, ηp
2 = 0.006

RFD at 0-100 ms 
(Nm/ms) 

0.67 ± 0.30 0.71 ± 0.23 0.79 ± 0.22 0.67 ± 0.27 0.70 ± 0.32 0.71 ± 0.25 
T: p = 0.47, F = 0.77, ηp

2 = 0.026
C x T: p = 0.15, F = 0.861, ηp

2 = 0.005
RFD at 0-200 ms 

(Nm/ms) 
0.59 ± 0.19 0.63 ± 0.13 0.69 ± 0.12 0.60 ± 0.17 0.60 ± 0.19 0.64 ± 0.11 

T: p = 0.19, F = 1.69, ηp
2 = 0.06

C x T: p = 0.37, F = 0.37, ηp
2 = 0.012

MVC-CON 
(Nm) 

193.1 ± 31.2 178.6 ± 23.7 175.2 ± 24.4 195.4 ± 32.4 175.3 ± 22.3 172.2 ± 26.1
T: p < 0.01, F = 8.61, ηp

2 = 0.381
C x T: p = 0.38, F = 1.00, ηp

2 = 0.067
CMJ height 

(cm) 
22.2 ± 3.7 22.4 ± 3.6 22.4 ± 3.1 21.8 ± 3.5 21.9 ± 3.9 21.7 ± 3.4 

T: p = 0.298, F = 1.26, ηp
2 = 0.083

C x T: p = 0.88, F = 0.126, ηp
2 = 0.009

PPT 
(kg) 

3.5 ± 1.4 4.7 ± 1.9 3.9 ± 1.5 3.3 ± 1.6 4.3 ± 1.7 4.2 ± 2.2 
T: p < 0.01, F = 10.8, ηp

2 = 0.437
C x T: p = 0.25, F = 1.45, ηp

2 = 0.094
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ROM at 20 min was significantly lower than the POST 
value. For MVC-ISO torque and MVC-CON torque, both 
the POST and 20 min values were significantly (p < 0.01) 
lower than the PRE values, and there were no significant 
differences between the POST and 20 min values of MVC-
ISO torque (p = 1.00) and MVC-CON torque (p = 0.50). 
For PPT, the POST values were significantly (p < 0.01) 
higher than the PRE values, but not at 20 min (p = 0.26). 
In addition, there were no significant differences between 
the PRE and 20-min values (p = 0.10). 

 
Discussion 
 
In this study, we aimed to investigate the acute and sus-
tained effects of high-and low-frequency VFR on knee 
flexion ROM, muscle strength, and jump performance. The 
results showed that VFR can increase knee flexion ROM 
but induces a decrease in knee extensor muscle strength up 
to 20 min after both high- and low-frequency VFR. How-
ever, there were no significant changes in RFD or CMJ 
height after the VFR interventions at high or low frequen-
cies. These results suggest that VFR intervention increases 
ROM without impairing dynamic performance (such as 
jump height or explosive muscle strength), regardless of 
the frequency used, and its effect remains for up to 20 min. 

The results showed that high-and low-frequency 
VFR intervention can increase knee flexion ROM, which 
is consistent with previous studies (Nakamura et al., 2022; 
Nakamura et al., 2021d; Nakamura et al., 2021e; Reiner et 
al., 2021). In addition, the results showed that the increase 
in ROM continued until 20 min after the VFR intervention 
at both frequencies. This information expands on previous 
research findings on the acute effects of VFR, and will be 
useful information for athletes and coaches. Interestingly, 
Nakamura et al. (2021b) showed that a 90-s (30 s × 3 sets) 
or 300-s (30 s × 10 sets) FR intervention can increase ankle 
dorsiflexion ROM, but the ankle dorsiflexion ROM re-
turned to the baseline after 30 min. 

The vibration stimulation is supposed to produce a 
more in-depth stimulation of the muscle and myofascial tis-
sue due to a greater contribution of the mechanoreceptors, 
specifically the interstitial type I and II receptors, which 
respond to sustained pressure and modulate the sympa-
thetic and parasympathetic activity (Behm and Wilke, 
2019; Cheatham and Stull, 2019). Taking all this infor-
mation together, since VFR intervention can have a lasting 
effect in increasing ROM, it will be necessary to investi-
gate the potential difference in the sustained effects be-
tween FR and VFR. In addition, previous studies have 
shown that the increase in ROM following a single or 
chronic FR or VFR intervention can be associated with a 
change in the participant’s experience, i.e., stretch toler-
ance (Kasahara et al., 2022a; Kiyono et al., 2020; 
Nakamura et al., 2021a; Nakamura et al., 2021b), even 
though the precise mechanism of the increase in ROM is 
unknown. In this study, PPT was found to be significantly 
increased immediately after the VFR intervention, regard-
less of the frequency, and the changes in stretch tolerance 
could contribute to the increase in knee flexion ROM. An-
other possible mechanism for this change in knee flexion 
ROM could be that the VFR on the muscle tissues induced 

thixotropic effects by reducing visco-elasticity (Behm and 
Wilke, 2019; Konrad et al., 2022b). Thus, it is possible that 
changes in stretch tolerance and thixotropy could contrib-
ute to an increase in knee flexion immediately after VFR 
and up to 20 min after the intervention. 

Surprisingly, high- and low-frequency VFR in-
duced significant decreases in MVC-ISO and MVC-CON 
torque of the knee extensors, and the decreases lasted up to 
20 min. Previous studies have either shown that VFR in-
creases muscle strength (Lee et al., 2018; Lyu et al., 2020; 
Reiner et al., 2021) or that there are no significant changes 
in muscle strength (Nakamura et al., 2021d; Nakamura et 
al., 2021e). Furthermore, the systematic review and meta-
analysis suggested that VFR could have great potential for 
increasing jump performance and muscle strength, alt-
hough no significant results were found (Alonso-Calvete et 
al., 2022). The discrepancy between the results of this 
study and the previous studies could be related to vibration-
induced muscle fatigue. Previous studies have suggested 
that vibration stimulation can cause post-activation perfor-
mance enhancement by neural potentiation but can induce 
muscle fatigue (Lamont et al., 2010; Tsai and Chen, 2021). 
Furthermore, Reiner et al. (2021) investigated the effect of 
a 180-s VFR intervention on recreational athletes and re-
ported a significant increase in MVC-ISO torque. How-
ever, in this study, we investigated the effect of a 180-s 
VFR intervention on sedentary healthy young males. It is 
possible that a 180-s VFR intervention was too long for 
sedentary healthy young males and may have caused mus-
cle fatigue. In addition, VFR can decrease muscle stiffness 
(Nakamura et al., 2021d; Nakamura et al., 2021e; Reiner et 
al., 2021). Thus, these changes, caused by the VFR inter-
vention, could have decreased the MVC-ISO and MVC-
CON torque, which persisted up to 20 min. 

Interestingly, our results showed no significant 
changes in RFD, the index of explosive muscle strength, or 
jump performance after the VFR intervention. Andersen 
and Aagaard (2006) pointed out that RFD is influenced by 
different physiological factors in the early (less than 
100 ms) and late (more than 100 ms) phases of isometric 
contraction (Andersen and Aagaard, 2006). Our results 
showed that the early and late phase RFD did not change 
with the VFR, regardless of the frequency. MVC-ISO and 
MVC-CON torque significantly decreased after the VFR 
intervention, but due to the fact that RFD is a sports perfor-
mance related variable, the adverse effects of a VFR inter-
vention can be considered to be small. 

In this study, we compared the effect of high- and 
low-frequency VFR on knee flexion ROM, muscle 
strength, PPT, and jump performance. Our results showed 
no significant differences between the high and low fre-
quencies. According to Germann et al. (2018), the 30–
50 Hz frequency has been found to be suitable for fostering 
therapeutic adaptations since it is similar to the motor 
unit’s discharge rate during maximal exertion (Germann et 
al., 2018). The frequencies used in this study were 35 Hz 
(low-frequency VFR) and 67 Hz (high-frequency VFR). 
Because of the proximity to the 30 - 50 Hz frequency band, 
there could be no significant difference between the high- 
and low-frequency VFR interventions. Therefore, future 
studies should investigate the acute effect of VFR at higher 
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frequencies. From a clinical perspective, because high-fre-
quency VFR is difficult to control, it is recommended that 
low-frequency VFR be incorporated into warm-up rou-
tines. 

 
Conclusion 
 
In this study, we compared the effect of high- and low-fre-
quency VFR on knee flexion ROM, knee extensor muscle 
strength, PPT, and jump performance. The results sug-
gested that VFR can increase knee flexion ROM but in-
duces a decrease in muscle strength up to 20 min after both 
high- and low-frequency VFR. However, there were no 
significant changes in RFD or CMJ height after the VFR 
intervention. Therefore, if the goal is to increase ROM 
without decreasing explosive muscle strength or jump per-
formance, it is recommended that VFR could serve as an 
effective warm-up tool in sports and rehabilitation settings, 
regardless of the frequency. 
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Key points 
 
 We investigated the acute and sustained effects of VFR with 

different frequencies on knee flexion range of motion and 
muscle strength of knee extensors. 

 A 180-s vibration foam rolling intervention with low and 
high frequencies can increase knee flexion range of motion 
but impairs maximal voluntary isometric and concentric 
contraction torque of knee extensors up to 20 min after the 
intervention.  

 However, there we no significant changes in rate of force 
development, i.e., index of explosive muscle strength and 
countermovement jump height. 
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