 Achenbach, L., Klein, C., Luig, P., Bloch, H., Schneider, D., Fehske, K. (2021) Collision with opponents—but not foul play—dominates injury mechanism in professional men’s basketball. BMC Sports Science, Medicine and Rehabilitation 13, 94. |
 Al Attar, W. S. A., Soomro, N., Sinclair, P. J., Pappas, E., Sanders, R. H. (2017) Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Medicine 47, 907-916. |
 Ayala, F., López-Valenciano, A., Martín, J. A. G., Croix, M. D. S., Vera-Garcia, F. J., del Pilar García-Vaquero, M., Ruiz-Pérez, I., Myer, G. D. (2019) A preventive model for hamstring injuries in professional soccer: Learning algorithms. International Journal of Sports Medicine 40, 344-353. |
 Bache-Mathiesen, L. K., Andersen, T. E., Dalen-Lorentsen, T., Clarsen, B., Fagerland, M. W. (2022) Assessing the cumulative effect of long-term training load on the risk of injury in team sports. BMJ Open Sport & Exercise Medicine 8, e001342. |
 Bartlett, J. D., O’Connor, F., Pitchford, N., Torres-Ronda, L., Robertson, S. J. (2017) Relationships between internal and external training load in team-sport athletes: evidence for an individualized approach. International Journal of Sports Physiology and Performance 12, 230-234. |
 Belkhelladi, M., Cierson, T., Martineau, P. A. (2025) Biomechanical Risk Factors for Increased Anterior Cruciate Ligament Loading and Injury: A Systematic Review. Orthopaedic Journal of Sports Medicine 13, 23259671241312681. |
 Belle, V., Papantonis, I. (2021) Principles and practice of explainable machine learning. Frontiers in Big Data 4, 688969. |
 Bittencourt, N. F., Meeuwisse, W., Mendonça, L., Nettel-Aguirre, A., Ocarino, J., Fonseca, S. (2016) Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition—narrative review and new concept. British Journal of Sports Medicine 50, 1309-1314. |
 Bogaert, S., Davis, J., Van Rossom, S., Vanwanseele, B. (2022) Impact of Gender and Feature Set on Machine-Learning-Based Prediction of Lower-Limb Overuse Injuries Using a Single Trunk-Mounted Accelerometer. Sensors (Basel) 22, 2874. |
 Briand, J., Deguire, S., Gaudet, S., Bieuzen, F. (2022) Monitoring variables influence on random forest models to forecast injuries in short-track speed skating. Frontiers in Sports and Active Living 4, 896828. |
 Carvalho, M., Pinho, A. J., Brás, S. (2025) Resampling approaches to handle class imbalance: a review from a data perspective. Journal of Big Data 12, 71. |
 Chia, L., De Oliveira Silva, D., Whalan, M., McKay, M. J., Sullivan, J., Fuller, C. W., Pappas, E. (2022) Non-contact anterior cruciate ligament injury epidemiology in team-ball sports: a systematic review with meta-analysis by sex, age, sport, participation level, and exposure type. Sports Medicine 52, 2447-2467. |
 Connaboy, C., Eagle, S. R., Johnson, C. D., Flanagan, S. D., Mi, Q., Nindl, B. C. (2019) Using Machine Learning to Predict Lower-Extremity Injury in US Special Forces. Medicine and Science in Sports and Exercise 51, 1073-1079. |
 Dauty, M., Crenn, V., Louguet, B., Grondin, J., Menu, P., Fouasson-Chailloux, A. (2022) Anatomical and neuromuscular factors associated to non-contact anterior cruciate ligament injury. Journal of Clinical Medicine 11, 1402. |
 Ekstrand, J., Hägglund, M., Waldén, M. (2011) Epidemiology of muscle injuries in professional football (soccer). The American Journal of Sports Medicine 39, 1226-1232. |
 Evans, S. L., Owen, R., Whittaker, G., Davis, O. E., Jones, E. S., Hardy, J., Owen, J. (2024) Non-contact lower limb injuries in Rugby Union: A two-year pattern recognition analysis of injury risk factors. Plos One 19, e0307287. |
 Fernández, A., Garcia, S., Herrera, F., Chawla, N. V. (2018) SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. Journal of Artificial Intelligence Research 61, 863-905. |
 Fernandez-Felix, B. M., López-Alcalde, J., Roqué, M., Muriel, A., Zamora, J. (2023) CHARMS and PROBAST at your fingertips: a template for data extraction and risk of bias assessment in systematic reviews of predictive models. BMC Medical Research Methodology 23, 44. |
 Florkowski, C. M. (2008) Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. The Clinical Biochemist Reviews 29, S83-S87. |
 Green, B., Bourne, M. N., Van Dyk, N., Pizzari, T. (2020) Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. British Journal of Sports Medicine 54, 1081-1088. |
 Guan, Y., Bredin, S. S., Taunton, J., Jiang, Q., Wu, N., Li, Y., Warburton, D. E. (2021) Risk factors for non-contact lower-limb injury: a retrospective survey in pediatric-age athletes. Journal of Clinical Medicine 10, 3171. |
 Hecksteden, A., Schmartz, G. P., Egyptien, Y., Aus der Fünten, K., Keller, A., Meyer, T. (2023) Forecasting football injuries by combining screening, monitoring and machine learning. Science and Medicine in Football 7, 214-228. |
 Henriquez, M., Sumner, J., Faherty, M., Sell, T., Bent, B. (2020) Machine learning to predict lower extremity musculoskeletal injury risk in student athletes. Frontiers in Sports and Active Living 2, 576655. |
 Hickey, J., Shield, A. J., Williams, M. D., Opar, D. A. (2014) The financial cost of hamstring strain injuries in the Australian Football League. British Journal of Sports Medicine 48, 729-730. |
 Horvat, T., Job, J. (2020) The use of machine learning in sport outcome prediction: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 10, e1380. |
 Huang, Y., Huang, S., Wang, Y., Li, Y., Gui, Y., Huang, C. (2022) A novel lower extremity non-contact injury risk prediction model based on multimodal fusion and interpretable machine learning. Frontiers in Physiology 13, 1024286. |
 Huang, Y., Li, C., Bai, Z., Wang, Y., Ye, X., Gui, Y., Lu, Q. (2023) The impact of sport-specific physical fitness change patterns on lower limb non-contact injury risk in youth female basketball players: a pilot study based on field testing and machine learning. Frontiers in Physiology 14, 1176713. |
 Hubáček, O., Šourek, G., Železný, F. (2019) Learning to predict soccer results from relational data with gradient boosted trees. Machine Learning 108, 29-47. |
 Jauhiainen, S., Kauppi, J.-P., Krosshaug, T., Bahr, R., Bartsch, J., Äyrämö, S. (2022) Predicting ACL injury using machine learning on data from an extensive screening test battery of 880 female elite athletes. The American Journal of Sports Medicine 50, 2917-2924. |
 Jauhiainen, S., Kauppi, J.-P., Leppänen, M., Pasanen, K., Parkkari, J., Vasankari, T., Kannus, P., Äyrämö, S. (2021) New machine learning approach for detection of injury risk factors in young team sport athletes. International Journal of Sports Medicine 42, 175-182. |
 Robles-Palazon, F. J., Puerta-Callejon, J. M., Gamez, J. A., Croix, M. D. S., Cejudo, A., Santonja, F., de Baranda, P. S., Ayala, F. (2023) Predicting injury risk using machine learning in male youth soccer players. Chaos, Solitons & Fractals 167, 113062. |
 Johnston, R., Cahalan, R., Bonnett, L., Maguire, M., Nevill, A., Glasgow, P., O’Sullivan, K., Comyns, T. (2019) Training load and baseline characteristics associated with new injury/pain within an endurance sporting population: a prospective study. International Journal of Sports Physiology and Performance 14, 590-597. |
 Kolodziej, M., Groll, A., Nolte, K., Willwacher, S., Alt, T., Schmidt, M., Jaitner, T. (2023) Predictive modeling of lower extremity injury risk in male elite youth soccer players using least absolute shrinkage and selection operator regression. Scandinavian Journal of Medicine & Science in Sports 33, 1021-1033. |
 Kulshrestha, S., Dligach, D., Joyce, C., Gonzalez, R., O’Rourke, A. P., Glazer, J. M., Stey, A., Kruser, J. M., Churpek, M. M., Afshar, M. (2021) Comparison and interpretability of machine learning models to predict severity of chest injury. JAMIA Open 4, ooab015. |
 Leckey, C., Van Dyk, N., Doherty, C., Lawlor, A., Delahunt, E. (2025) Machine learning approaches to injury risk prediction in sport: a scoping review with evidence synthesis. British Journal of Sports Medicine 59, 491-500. |
 Lipps Lene, C., Frere, J., Weissland, T. (2024) Machine learning in knee injury sequelae detection: Unravelling the role of psychological factors and preventing long-term sequelae. Journal of Experimental Orthopaedics 11, e70081. |
 López-Valenciano, A., Ayala, F., Puerta, J. M., De Ste Croix, M. B. A., Vera-Garcia, F. J., Hernandez-Sanchez, S., Ruiz-Perez, I., Myer, G. D. (2018) A preventive model for muscle injuries: a novel approach based on learning algorithms. Medicine and Science in Sports and Exercise 50, 915-927. |
 López-Valenciano, A., Ruiz-Pérez, I., Garcia-Gómez, A., Vera-Garcia, F. J., Croix, M. D. S., Myer, G. D., Ayala, F. (2020) Epidemiology of injuries in professional football: a systematic review and meta-analysis. British Journal of Sports Medicine 54, 711-718. |
 Lu, D., McCall, A., Jones, M., Steinweg, J., Gelis, L., Fransen, J., Duffield, R. (2021) The financial and performance cost of injuries to teams in Australian professional soccer. Journal of Science and Medicine in Sport 24, 463-467. |
 Lu, Y., Pareek, A., Lavoie-Gagne, O. Z., Forlenza, E. M., Patel, B. H., Reinholz, A. K., Forsythe, B., Camp, C. L. (2022) Machine learning for predicting lower extremity muscle strain in National Basketball Association athletes. Orthopaedic Journal of Sports Medicine 10. |
 Majumdar, A., Bakirov, R., Hodges, D., Scott, S., Rees, T. (2022) Machine learning for understanding and predicting injuries in football. Sports Medicine - Open 8, 73. |
 Martins, F., Sarmento, H., Gouveia, É. R., Saveca, P., Przednowek, K. (2025) Machine learning-based prediction of muscle injury risk in professional football: a four-year longitudinal study. Journal of Clinical Medicine 14, 8039. |
 Musat, C. L., Mereuta, C., Nechita, A., Tutunaru, D., Voipan, A. E., Voipan, D., Mereuta, E., Gurau, T. V., Gurău, G., Nechita, L. C. (2024) Diagnostic applications of AI in sports: a comprehensive review of injury risk prediction methods. Diagnostics 14, 2516. |
 Nassis, G., Verhagen, E., Brito, J., Figueiredo, P., Krustrup, P. (2023) A review of machine learning applications in soccer with an emphasis on injury risk. Biology of Sport 40, 233-239. |
 Oliver, J. L., Ayala, F., De Ste Croix, M. B., Lloyd, R. S., Myer, G. D., Read, P. J. (2020) Using machine learning to improve our understanding of injury risk and prediction in elite male youth football players. Journal of Science and Medicine in Sport 23, 1044-1048. |
 Ou-Yang, Y., Hong, W., Peng, L., Mao, C.-X., Zhou, W.-J., Zheng, W.-T., Wang, Q., Qi, F., Li, X.-W., Chen, S.-H. (2025) Explaining basketball game performance with SHAP: insights from Chinese Basketball Association. Scientific Reports 15, 13793. |
 Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E. (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71. |
 Ramspek, C. L., Jager, K. J., Dekker, F. W., Zoccali, C., van Diepen, M. (2021) External validation of prognostic models: what, why, how, when and where? Clinical Kidney Journal 14, 49-58. |
 Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W. (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913-929. |
 Rommers, N., Rössler, R., Verhagen, E., Vandecasteele, F., Verstockt, S., Vaeyens, R., Lenoir, M., D’hondt, E., Witvrouw, E. (2020) A machine learning approach to assess injury risk in elite youth football players. Medicine and Science in Sports and Exercise 52, 1745-1751. |
 Rossi, A., Pappalardo, L., Cintia, P., Iaia, F. M., Fernández, J., Medina, D. (2018) Effective injury forecasting in soccer with GPS training data and machine learning. PLOS ONE 13, e0201264. |
 Rössler, R., Junge, A., Bizzini, M., Verhagen, E., Chomiak, J., aus der Fünten, K., Meyer, T., Dvorak, J., Lichtenstein, E., Beaudouin, F. (2018) A multinational cluster randomised controlled trial to assess the efficacy of ‘11+ Kids’: a warm-up programme to prevent injuries in children’s football. Sports Medicine 48, 1493-1504. |
 Ruddy, J. D., Cormack, S. J., Whiteley, R., Williams, M. D., Timmins, R. G., Opar, D. A. (2019) Modeling the risk of team sport injuries: a narrative review of different statistical approaches. Frontiers in Physiology 10, 829. |
 Ruddy, J. D., Shield, A. J., Maniar, N., Williams, M. D., Duhig, S. J., Timmins, R. G., Hickey, J., Bourne, M. N., Opar, D. A. (2018) Predictive modeling of hamstring strain injuries in elite Australian footballers. Medicine and Science in Sports and Exercise 50, 906-914. |
 Ruiz-Perez, I., Lopez-Valenciano, A., Hernandez-Sanchez, S., Puerta-Callejon, J. M., De Ste Croix, M., Sainz de Baranda, P., Ayala, F. (2021) A field-based approach to determine soft tissue injury risk in elite futsal using novel machine learning techniques. Frontiers in Psychology 12, 610210. |
 Rumpf, M. C., Cronin, J. (2012) Injury incidence, body site, and severity in soccer players aged 6-18 years: implications for injury prevention. Strength and Conditioning Journal 34, 20-31. |
 Sampaio, T., Oliveira, J. P., Marinho, D. A., Neiva, H. P., Morais, J. E. (2024) Applications of machine learning to optimize tennis performance: a systematic review. Applied Sciences 14, 5517. |
 Van Eetvelde, H., Mendonça, L. D., Ley, C., Seil, R., Tischer, T. (2021) Machine learning methods in sport injury prediction and prevention: a systematic review. Journal of Experimental Orthopaedics 8, 1-15. |
 Wang, H.-X., Fratiglioni, L., Frisoni, G. B., Viitanen, M., Winblad, B. (1999) Smoking and the occurrence of Alzheimer’s disease: cross-sectional and longitudinal data in a population-based study. American Journal of Epidemiology 149, 640-644. |
 Watson, N., Hendricks, S., Stewart, T., Durbach, I. (2021) Integrating machine learning and decision support in tactical decision-making in rugby union. Journal of the Operational Research Society 72, 2274-2285. |
 Webster, K. E., Hewett, T. E. (2018) Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. Journal of Orthopaedic Research 36, 2696-2708. |
 Whittaker, J. L., Räisänen, A. M., Martin, C., Galarneau, J.-M., Martin, M., Losciale, J. M., Bullock, G. S., Dubé, M.-O., Bizzini, M., Bourne, M. N. (2025) Modifiable risk factors for lower-extremity injury: a systematic review and meta-analysis for the Female, Woman and Girl Athlete Injury Prevention (FAIR) consensus. British Journal of Sports Medicine. |
 Wilkerson, G. B., Gupta, A., Colston, M. A. (2018) Mitigating sports injury risks using internet of things and analytics approaches. Risk Analysis 38, 1348-1360. |
 Willy, R. W. (2018) Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Physical Therapy in Sport 29, 26-33. |
 Wolff, R. F., Moons, K. G., Riley, R. D., Whiting, P. F., Westwood, M., Collins, G. S., Reitsma, J. B., Kleijnen, J., Mallett, S. (2019) . (2019) PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Annals of Internal Medicine 170, 51-58. |
 Yu, B., Garrett, W. E. (2007) Mechanisms of non-contact ACL injuries. British Journal of Sports Medicine 41, i47-i51. |
 Yuan, J., Zeng, Q., Li, J., Cong, Z., Zhang, Y. (2025) Machine learning applications in sports injury prediction: a narrative review. Science Progress 108, 00368504251385956. |
 Zumeta-Olaskoaga, L., Bender, A., Lee, D.-J. (2025) Flexible modelling of time-varying exposures and recurrent events to analyse training load effects in team sports injuries. Journal of the Royal Statistical Society Series C: Applied Statistics 74, 391-405. |
 Liveris, N. I. (2025) Applying systems thinking approaches to investigate the complex interrelationships of risk factors affecting acute non-contact lower limb injuries in team sports (PhD Academy Award). British Journal of Sports Medicine 59, 683-684. |
|