Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Views
12981
Download
1279
from September 2014
 
©Journal of Sports Science and Medicine (2014) 13, 114 - 119

Research article
Effects Of Cadence on Aerobic Capacity Following a Prolonged, Varied Intensity Cycling Trial
Charles L. Stebbins1, , Jesse L. Moore2, Gretchen A. Casazza2
Author Information
1 Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA
2 Sports Performance Laboratory, Medical Center Sports Medicine Program, University of California, Davis, Sacramento, CA, USA

Charles L. Stebbins
✉ Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, One Shield Ave., TB- 172, Davis, California, 95616, United States
Email: clstebbins@ucdavis.edu
Publish Date
Received: 22-05-2013
Accepted: 04-10-2013
Published (online): 20-01-2014
 
 
ABSTRACT

We determined if high cadences, during a prolonged cycling protocol with varying intensities (similar to race situations) decrease performance compared to cycling at a lower, more energetically optimal, cadence. Eight healthy, competitive male road cyclists (35 ± 2 yr) cycled for 180 min at either 80 or 100 rpm (randomized) with varying intensities of power outputs corresponding to 50, 65 and 80% of VO2max. At the end of this cycling period, participants completed a ramped exercise test to exhaustion at their preferred cadence (90 ± 7 rpm). There were no cadence differences in blood glucose, respiratory exchange ratio or rate of perceived exertion. Heart Rate, VO2 and blood lactate were higher at 100 rpm vs. 80 rpm. The total energy cost while cycling during the 65% and 80% VO2max intervals at 100 rpm (15.2 ± 2.7 and 19.1 ± 2.5 kcal∙min-1, respectively) were higher than at 80 rpm (14.3 ± 2.7 and 18.3± 2.2 kcal∙min-1, respectively) (p < 0.05). Gross efficiency was higher at 80 rpm vs. 100 rpm during both the 65% (22.8 ± 1.0 vs. 21.3 ± 4.5%) and the 80% (23.1 vs. 22.1 ± 0.9%) exercise intensities (P< 0.05). Maximal power during the performance test (362 ± 38 watts) was greater at 80 rpm than 100 rpm (327 ± 27 watts) (p < 0.05). Findings suggest that in conditions simulating those seen during prolonged competitive cycling, higher cadences (i.e., 100 vs. 80 rpm) are less efficient, resulting in greater energy expenditure and reduced peak power output during maximal performance.

Key words: Power output, energy expenditure, varied intensity, cycling efficiency, lactate, oxygen consumption


           Key Points
  • When competitive cyclists perform prolonged exercise that simulates racing conditions (i.e., variable, low-moderate submaximal cycling), a higher cadence results in excess energy expenditure and lower gross efficiency compared to a lower cadence at the same power output.
  • Consequently, maximal power output is reduced during a subsequent exercise bout to exhaustion after using a higher cadence.
  • Selection of a lower, more energetically optimal cadence during prolonged cycling exercise may allow competitive cyclists to enhance maximal performance later in a race.
 
 
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archive Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
 
  
 
JSSM | Copyright 2001-2024 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.