Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Views
11396
Download
1354
from September 2014
 
©Journal of Sports Science and Medicine (2014) 13, 211 - 216

Case report
Optimum Projection Angle for Attaining Maximum Distance in a Rugby Place Kick
Nicholas P. Linthorne , Thomas G. Stokes
Author Information
Centre for Sports Medicine and Human Performance, School of Sport and Education, Brunel University, Uxbridge, Middlesex, United Kingdom

Nicholas P. Linthorne
✉ Centre for Sports Medicine and Human Performance, School of Sport and Education, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
Email: nick.linthorne@brunel.ac.uk
Publish Date
Received: 15-07-2013
Accepted: 27-09-2013
Published (online): 20-01-2014
 
 
ABSTRACT

This study investigated the effect of projection angle on the distance attained in a rugby place kick. A male rugby player performed 49 maximum-effort kicks using projection angles of between 20 and 50°. The kicks were recorded by a video camera at 50 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity and projection angle of the ball. The player’s optimum projection angle was calculated by substituting a mathematical expression for the relationship between projection velocity and projection angle into the equations for the aerodynamic flight of a rugby ball. We found that the player’s calculated optimum projection angle (30.6°, 95% confidence limits ± 1.9°) was in close agreement with his preferred projection angle (mean value 30.8°, 95% confidence limits ± 2.1°). The player’s calculated optimum projection angle was also similar to projection angles previously reported for skilled rugby players. The optimum projection angle in a rugby place kick is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased. Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle.

Key words: Biomechanics, kinematics, projectile


           Key Points
  • The optimum projection angle in a rugby place kick is about 30°.
  • The optimum projection angle is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased.
  • Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle.
 
 
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archive Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
 
  
 
JSSM | Copyright 2001-2024 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.