Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Androit-APP Journal of Sports Science and Medicine
Views
6532
Download
202
from September 2014
 
©Journal of Sports Science and Medicine (2010) 09, 439 - 444

Research article
Longitudinal Study in 3,000 m Male Runners: Relationship between Performance and Selected Physiological Parameters
José A. Bragada1,2, , Paulo J. Santos3, José A. Maia3, Paulo J. Colaço3, Vítor P. Lopes1,2, Tiago M. Barbosa1,2
Author Information
1 Polytechnic Institute of Bragança, Department of Sport Sciences, Bragança, Portugal
2 Research Centre in Sports, Health and Human Development, Vila Real, Portugal
3 CIFI2D, Sports Faculty, University of Porto, Porto, Portugal

José A. Bragada
✉ Polytechnic Institute of Bragança, Department of Sport Sciences. Quinta de Santa Apolónia; Apartado 1101, 5301-856 Bragança, Portugal
Email: jbragada@ipb.pt
Publish Date
Received: 31-12-2009
Accepted: 16-06-2010
Published (online): 01-09-2010
Share this article
 
 
ABSTRACT

The purpose of the present study was to analyze longitudinal changes in 3,000 m running performance and the relationship with selected physiological parameters. Eighteen well-trained male middle-distance runners were measured six times (x3 per year) throughout two consecutive competitive seasons. The following parameters were measured on each occasion: maximal oxygen uptake (VO2max), running economy (RE), velocity at maximal oxygen uptake (vVO2max), velocity at 4mmol L-1 blood lactate concentration (V4), and performance velocity (km·h-1) in 3,000 m time trials. Values ranged from 19.59 to 20.16 km·h-1, running performance; 197 to 207 mL·kg-1·km-1. RE; 17.2 to 17.7 km·h-1, V4; 67.1 to 72.5 mL·kg-1·min-1, VO2max; and 19.8 to 20.2 km·h-1, vVO2max. A hierarchical linear model was used to quantify longitudinal relationships between running performance and selected physiological variables. Running performance decreased significantly over time, between each time point the decrease in running velocity was 0.06 km·h-1. The variables that significantly explained performance changes were V4 and vVO2max. Also, vVO2max and V4 were the measures most strongly correlated with performance and can be used to predict 3,000 m race velocity. The best prediction formula for 3,000 m running performance was: y = 0.646 + 0.626x + 0.416z (R2=0.85); where y = V3,000 m velocity (km·h-1), x = V4 (km·h-1) and z = vVO2max (km·h-1). The high predictive power of vVO2max and V4 suggest that both coaches and athletes should give attention to improving these two physiological variables, in order to improve running performance.

Key words: Tracking, running performance, maximal oxygen uptake, blood lactate, running economy


           Key Points
  • V4 and vVOmax are the most important physiological variables to explain longitudinal changes in 3000 m running performance;
  • 3000 m running performance prediction is better if one uses both V4 and vVOmax in the same formula: y = 0.646 + 0.626x + 0.416z; R=0.85, where y is the Vrace (km/h), x is V4 (km/h) and z is vVOmax (km/h).
  • The V4 and vVOmax can be used for training control purposes.
 
 
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archive Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
 
  
 
JSSM | Copyright 2001-2020 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.