Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Androit-APP Journal of Sports Science and Medicine
Views
5979
Download
129
from September 2014
 
©Journal of Sports Science and Medicine (2011) 10, 491 - 497

Research article
Characteristics of Maximum Performance of Pedaling Exercise in Recumbent and Supine Positions
Morimasa Kato1, Toshihiko Tsutsumi2, Takashi Yamaguchi3, Shizue Kurakane1, Hyukki Chang4, 
Author Information
1 Yonezawa Women’s Junior College of Yamagata Prefecture, Japan
2 Fukuyama University, Japan
3 Graduate School of Science and Engineering, Yamagata University, Japan
4 Seoul Women’s University, Korea

Hyukki Chang
✉ Department of Human Movement Science, Seoul Women’s University 139-774 622 Hwarangro, Nowon-Gu, Seoul, Korea
Email: hkchang@swu.ac.kr
Publish Date
Received: 17-01-2011
Accepted: 07-06-2011
Published (online): 01-09-2011
Share this article
 
 
ABSTRACT

To determine the characteristics of maximum pedaling performance in the recumbent and supine positions, maximum isokinetic leg muscle strength was measured in eight healthy male subjects during pedaling at three velocities (300°/s, 480°/s, and 660°/s), and maximum incremental tests were performed for each position. The maximum isokinetic muscle strength in the recumbent position was 210.0 ± 29.2 Nm at 300°/s, 158.4 ± 19.8 Nm at 480°/s, and 110.6 ± 13.2 at 660°/s. In contrast, the muscle strength in the supine position was 229.3 ± 36.7 Nm at 300°/s, 180. 7 ± 20.3 Nm at 480°/s, and 129.6 ± 14.0 Nm at 660°/s. Thus, the maximum isokinetic muscle strength showed significantly higher values in the supine position than in the recumbent position at all angular velocities. The knee and hip joint angles were measured at peak torque using a goniometer; the knee joint angle was not significantly different between both positions, whereas the hip joint angle was greater in the supine position than in the recumbent position (Supine position: 137.3 ± 9. 33 degree at 300°/s, 140.0 ± 11.13 degrees at 480°/s, and 141.0 ± 9.61 degrees at 660°/s. Recumbent position: 99.5 ± 12.21 degrees at 300°/s, 101.6 ± 12.29 degrees at 480°/s, and 105.8 ± 14.28 degrees at 660°/s). Peak oxygen uptake was higher in the recumbent position (50.3 ± 4.43 ml·kg-1·min-1) than in the supine position (48.7 ± 5.10 ml·kg-1·min-1). At maximum exertion, the heart rate and whole-body rate of perceived exertion (RPE) were unaffected by position, but leg muscle RPE was higher in the supine position (19.5 ± 0.53 than in the recumbent position (18.8 ± 0.71). These results suggest that the supine position is more suitable for muscle strength exertion than the recumbent position, and this may be due to different hip joint angles between the positions. On the contrary, the endurance capacity was higher in the recumbent position than in the supine position. Since leg muscle RPE was higher in the supine position than in the recumbent position, it was suggested that different burdens imposed on active muscles in both positions exerted an impact on the result of the endurance capacity.

Key words: Pedaling position, recumbent, supine, leg muscle strength, oxygen uptake


           Key Points
  • Isokinetic maximal peak torque measured in this study during pedaling showed higher values in the supine position than in the recumbent position at all angular velocities.
  • Maximum oxygen uptake as evaluated by maximum incremental testing showed higher values in the recumbent position than in the supine position.
  • No significant changes in the angle of peak torque for the knee joint or hip joint were observed in either the recumbent or supine position even at an increased angular velocity. These observations indicate the effectiveness of a cycle-type muscle strength assessment device for evaluating leg muscle strength.
 
 
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archive Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
 
  
 
JSSM | Copyright 2001-2020 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.