Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Androit-APP Journal of Sports Science and Medicine
Views
9084
Download
113
from September 2014
 
©Journal of Sports Science and Medicine (2013) 12, 502 - 511

Research article
The Effects of Aerobic Exercise Intensity and Duration on Levels of Brain-Derived Neurotrophic Factor in Healthy Men
Matthew T. Schmolesky,1 , David L. Webb1, Rodney A. Hansen2
Author Information
1 Department of Psychology, Neuroscience Program, Weber State University, Ogden, UT, USA
2 Department of Health Promotion and Human Performance, Weber State University, Ogden, UT, USA

Matthew T. Schmolesky
✉ Department of Psychology and Program in Neuroscience, 1202 University Circle, Weber State University, Ogden, UT, 84408-1202, USA
Email: mschmolesky@weber.edu
Publish Date
Received: 18-03-2013
Accepted: 27-05-2013
Published (online): 01-09-2013
Share this article
 
 
ABSTRACT

This study examined the combined effects of aerobic exercise intensity and duration on serum brain-derived neurotrophic factor (sBDNF) levels in healthy human adult males aged 18-25 years. Forty five participants were randomly assigned to one of six exercise conditions based on varying intensity (80% or 60% of heart rate reserve, or control) and duration (20 or 40 min). Vigorous (80% heart rate reserve, “Vig”) and moderate (60% heart rate reserve, “Mod”) exercise was carried out on cycle ergometers. Control subjects remained seated and at rest during the exercise period. Pre- and post-exercise blood draws were conducted and sBDNF measured. Physical exercise caused an average ~ 32% increase in sBDNF levels relative to baseline that resulted in concentrations that were 45% higher than control conditions. Comparing the six conditions, sBDNF levels rose consistently among the four exercise conditions (Vig20 = 26.38 ± 34.89%, Vig40 = 28.48 ± 19.11%, Mod20 = 41.23 ± 59.65%, Mod40 = 30.16 ± 72.11%) and decreased consistently among the controls (Con20 = -14.48 ± 16.50, Con40 = -10.51 ± 26.78). Vig conditions had the highest proportion of subjects that experienced a significant (? 10%) increase in sBDNF levels, followed by Mod and control conditions. An analysis of modeled sBDNF integrals (area under the curve) demonstrated substantially greater values for Vig40 and Mod40 conditions compared to Vig20 and Mod20 conditions. Collectively, these results demonstrate that neither duration (20 vs. 40 min) nor intensity (60 vs. 80% HR reserve) significantly affects the benefits of exercise if only the sBDNF increase at a single post-exercise time point is considered. However, when comparing either the probability of achieving a significant BDNF gain or the integral (i.e. the volume of circulating BDNF over time) the Vig40 condition offers maximal benefits. Thus, we conclude that the future study of aerobic exercise effects on BDNF-mediated neuroprotection should take the volume of BDNF release over time into account.

Key words: Aerobic, brain-derived neurotrophic factor (BDNF), exercise, human, neurotrophins


           Key Points
  • Aerobic exercise caused a ~32% increase in serum BDNF in adult human males while serum BDNF decreased 13% in sedentary control subjects.
  • Vigorous intensity (80% heart rate reserve), long duration (40 min) exercise offered the greatest probability of a significant BDNF elevation.
  • Long duration exercise offered the greatest numerical benefits in terms of BDNF integral.
  • Neither intensity nor duration affected the mean elevation in BDNF amplitude caused by exercise.
 
 
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archive Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
 
  
 
JSSM | Copyright 2001-2020 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.